
1

Enclave-Based Oblivious RAM Using Intel’s SGX
Maan Haj Rachid1, Ryan Riley2, and Qutaibah Malluhi3

1maan.rachid@scilifelab.se, Karolinska Institutet
2rileyrd@cmu.edu, Carnegie Mellon University in Qatar

3qmalluhi@qu.edu.qa, Qatar University

F

Abstract—Oblivious RAM (ORAM) schemes exist in order to protect
the access pattern of data in a data store. Under an ORAM algorithm,
a client accesses a data store in such a way that does not reveal which
item it is interested in. This is typically accomplished by accessing
multiple items each access and periodically reshuffling some, or all,
of the data in the data-store. While many recent schemes make the
ORAM computation complexity feasible, the performance of practical
implementations is still largely limited by computational and storage
limitations of the client as well as the bandwidth available between the
client and the data store. In a cloud computing environment, where it
is commonly assumed that the client is underpowered and you must
pay by the gigabyte for data transfer, traditional ORAM methods are not
optimal.

Intel’s Software Guard Extensions (SGX) provide a new opportunity
for ORAM implementations that can safely outsource the computational
and bandwidth requirements along with the data itself, meaning that
the client can be very limited and still attain high performance. In this
work, we develop efficient techniques for constructing ORAMs that takes
advantage of the SGX enclave technology. We demonstrate implemen-
tations of multiple ORAM schemes (linear, square root, and path ORAM)
using Intel’s SGX. We discuss the limitations of SGX as they pertain to
implementing ORAM, and discuss alterations to the standard algorithms
to overcome these limitations. We then evaluate the performance of our
techniques.

1 INTRODUCTION

In a data outsourcing model using the cloud, an organiza-
tion stores its data with a cloud provider instead of hosting
it locally. Most providers charge by the gigabyte for both
storage and transfer of data. In order to guarantee the con-
fidentiality and integrity of the data, the organization will
also encrypt it with a key not known to the cloud provider.
While this prevents a potentially malicious provider from
learning the contents of the data, they are still able to learn
the access pattern by observing which data is accessed by
the organization and when. This information can be used
to glean sensitive information [1]. For example, it has been
shown that by observing accesses to an encrypted email
repository, an adversary can infer as many as 80 percent
of the search queries [2].

Oblivious RAM (ORAM) schemes provide a solution
to this problem. ORAMs were originally described using
a CPU and memory model [3], but the adaptation to out-
sourced storage is straight-forward. The idea is based on a
simple principle with a complex theoretical underpinning:

Instead of the organization only accessing the data it wants
with a particular request, it actually accesses multiple en-
tries from the data store, and over time (or periodically)
reshuffles its contents. The ORAM provides an abstraction
through which the organization can access arbitrary parts
of their data without leaking any information about which
portions of data they are actually interested in.

One limitation of applying ORAM to the cloud is that
ORAM schemes tend to assume that a client has a large
local storage for a cache and the ability to easily and fre-
quently download large portions of the protected dataset.
These two parameters are directly at odds with why many
organizations choose to outsource in the first place. This
would hinder the adoption of ORAM for practical data
outsourcing.

A new feature in Intel microprocessors, Software Guard
Extensions (SGX), may provide a solution for this problem.
SGX is a set of new instructions and modifications to the
memory access architecture of Intel CPUs. SGX allows an
application to create a container, referred to as an enclave,
which is a protected area in the application’s address space.
The data inside this enclave is both confidential and secure,
even in the face of an attacker with full control of the op-
erating system. Attempted accesses to the enclave memory
area from software not resident in the enclave are prevented
at the hardware level [4].

In this work, we take advantage of the confidentiality
and the integrity that SGX provides in order to build and
compare ORAM systems in which the client has no in-
volvement other than sending the read/write requests to
the server. Under this model, the organization outsources
their data as well as a secure enclave that manages the
computational and bandwidth intensive tasks associated
with ORAMs.

Building an SGX ORAM requires addressing major chal-
lenges. One challenge is the limited space available in the
enclave, which could be a problem not only for processing
data, but also for storing some auxiliary data structures such
as permutation maps which are required by some ORAM
algorithms. This limitation may also inhibit the execution
of an ORAM shuffling algorithm. Another challenge is the
absence of memory access obliviousness in the enclave,
which requires additional arrangements in order to hide the
memory access patterns. Such challenges are not encoun-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. This is a pre-print of 10.1016/j.cose.2019.101711

mailto:maan.rachid@scilifelab.se
mailto:rileyrd@cmu.edu
mailto:qmalluhi@qu.edu.qa
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.cose.2019.101711


2

tered in traditional client-server models.
In this paper, we construct three different ORAMs using

SGX: linear, square root, and path. We explore the limi-
tations of SGX that make this task difficult, and discuss
our modifications to the traditional algorithms in order to
handle the enclave limitations. We also compare the per-
formance of our SGX ORAMs and analyze the parameters
that affect this performance. We identify the circumstances
which make one type preferable over others.

2 BACKGROUND

In this section we will discuss background information
related to Intel’s Software Guard Extensions (SGX) and
oblivious RAM.

2.1 SGX

Under a traditional security model with an x86 processor,
the system software (such as the operating system or virtual
machine monitor) has full access to all system memory. As a
consequence of this, it is effectively impossible for a process
to prevent the system software from gaining access to its
secrets. In a cloud computing model, this means that the
outsourcing organization must trust the cloud provider with
the contents of any processes running on the cloud servers.

SGX is a set of new instructions and modifications to
the memory access architecture of Intel CPUs. SGX was first
rolled out in the 6th Generation Intel R© CoreTM processor
platforms (Skylake). SGX provides protection via enclaves
which are protected areas in memory. Intel provides a
collection of APIs, sample source code, libraries and tools
that enable software developers to write applications that
can make use of SGX.

An application with an enclave is split into at least
two components: the trusted enclave component, and the
untrusted application component. Control flow changes be-
tween enclave and untrusted code using ECalls (from appli-
cation to enclave) and OCalls (from enclave to application).
Data stored within the enclave memory (which is called
Enclave Page Cache (EPC)) can only be accessed by enclave
code, but the enclave itself is permitted to access memory
from the untrusted component. (This facilitates the sharing
of data between the trusted and untrusted components.)

The current version of SGX available in hardware is
SGX1 (SGX2 [5] has been designed, but as of this writing
has not be released in silicon.) One of the major limitations
of SGX1 is that there is a hard limit. This memory is
reserved on boot-up and cannot be changed at runtime. This
limits the amount of data that can be protected inside an
enclave without resorting to costly paging schemes, which
has implications for applications being built to make use of
SGX.

One area of research regarding vulnerabilities of SGX
specifically focuses on side-channels [6], [7], [8], [9], [10],
[11], [12]. A side-channel, in this case, is an unintentional
leak of information from inside to outside the enclave. Our
approach to side-channels is discussed in more detail in
Section 4.2.

2.2 Oblivious RAM Overview
The goal of oblivious RAM is to hide the access pattern of
data stored in a memory when the attacker has full access to
the memory bus. It is motivated by the idea that an attacker
with the access pattern can still potentially learn confidential
information, even if the data in memory is always stored
and transmitted in an encrypted form. The basic idea is that
the memory access pattern can be hidden if we hide the
addresses (indices) of the items which are requested by the
client as well as the number of times each item is requested.
We will now provide a brief overview of the three types of
oblivious RAM studied in this work.

2.2.1 Linear ORAM
A trivial implementation for an oblivious RAM is to scan the
entire memory for each actual memory access. This scheme
is called linear ORAM. In a client-server setting, when the
client needs to read item i, it requests all the items from
the server then writes all values back to the server. This
guarantees that an adversary on the server side will not be
able to know the requested index nor the type of access.
Clearly, this is a naive technique since each request will cost
the client an overhead of O(N) accesses, whereN represents
the number of memory items.

2.2.2 Square Root ORAM
Goldreich and Ostrovsky [3] presented two ORAM con-
structions with a hierarchical layered structure: the first,
Square-Root ORAM, provides square root access complexity
and constant space requirement; the second, Hierarchical
ORAM, requires a logarithmic space consumption and has
polylogarithmic access complexity. Square-root ORAM was
revisited in [13] to improve its performance in a secure
multi-party computation setting.

Consider an ORAM A of size N . In order to prepare
the data, we allocate an additional

√
N dummy items and

then randomly shuffle the N +
√
N items and store them

on the server. We also allocate a cache (called the shelter) at
the client with size

√
N . When the client requests a specific

item, it first checks its local shelter. If the item is there, then
the client requests the location of a dummy item from the
server. If the item is not there, then the client requests the
location of the actual item from the server and stores a copy
in the local shelter.

Accordingly, an adversary watching the server’s mem-
ory access will see, for every

√
N requests from the client,√

N accesses to random locations with at most one access
to each of these locations. None of the actual locations that
are needed by the client is revealed to the server since the
server only sees the permuted locations. In addition, each
location is guaranteed to be visited at most once.

After
√
N accesses, a re-initialization process is required.

Array A should be reshuffled again (obliviously) and the
shelter items should be cleared.

2.2.3 PATH ORAM
Several recent ORAM schemes have been proposed [14],
[15], [16], [17], [18], [19], [20]. The work of Shi et al. [21]
adopted a sequence of binary trees as the underlying struc-
ture. Stefanov et al. [1] utilized this concept to build a simple
ORAM called path ORAM.



3

In path ORAM we map every block of data in the ORAM
represented by input array A to a (uniformly) random leaf
in a tree (typically binary) on the server, using a position
map which is stored at the client. Each node in the tree has
exactly Z blocks which are initially dummy blocks. Each
data item is stored in a node on the path extending from
the leaf to which the data item was mapped, up to the root.
When a specific item is requested, a position map is used to
point out the leaf to which the block is mapped to. Then the
whole path is read starting from the block’s mapped leaf up
to the root into a client side cache (the stash), from which the
client can access the item it requested. After this, we remap
the selected item to a different leaf node, and then the path
just read is written back to the server.

3 RELATED WORK

In this section we will discuss research efforts related to the
usage of SGX for secure computation that are important in
relation to this work. SGX has been used to implement a
variety of secure computation techniques such as the private
membership test [22], secure multiparty computation [23],
secure indexing [24], and oblivious queries.

Most related to our work are other works that imple-
ment oblivious data stores using SGX. In a sense, these
approaches can be thought of as use-cases for oblivious
RAM systems. They differ in their interest of channel side
attacks which may reveal some information about the en-
clave’s memory access if no action is taken. Oblix [25] is
an oblivious search index for encrypted data which hides
memory accesses, hides the result size of searches, and
supports insertions and deletions with good efficiency. Oblix
also provides protection against modification attacks in
which an attacker can modify data or queries. However,
Oblix considers any side-channel leakage from within the
enclave as out of scope. Obliviate [26] is a data oblivious
filesystem which adapts the ORAM protocol to read and
write data from a file within an SGX enclave. Obliviate
utilizes Path ORAM protocol to achieve its target and even
parallelizes its write-back process in order to boost the
performance. While data are written to and read from files
in [26], our work focuses on memory reads and writes. The
work of [27] presents an SGX-based efficient SQL search
over encrypted databases. The access pattern is protected
against side channel attacks. The solution can process large
databases without requiring any long-term storage on SGX.
While requests are SQL statements in [27], they are memory
requests in this work. OBFSCURO [28] utilizes SGX to
transform a program into a side-channel-secure and ORAM-
compatible one. Then, OBFSCURO ensures that its ORAM
controller always performs data oblivious accesses. On the
contrary to several works including this one which focus on
data obliviousness, OBFSCURO presents a generic security
framework against all memory-based side-channel attacks
(code and data).

Most similar to our work is ZeroTrace [29](ZT), which
implements and tests SGX implementations of path and
circuit ORAM. There are a number of differences with our
work. First, circuit and path ORAM are very similar in
design and functionality. The primary difference lies in their
eviction strategy. So, while ZeroTrace compares two very

Fig. 1: The communication between the two parties. The
red X indicates untrusted party. Encrypted Data are stored

on the server. Encryption key is stored in the enclave.

similar ORAM systems, our work compares the perfor-
mance of three very different ORAM designs and studies the
situations which favor each type. Another difference is the
manner in which both works handle oblivious access of data
inside the enclave. ZeroTrace makes use of the x86 CMOV
instruction, a single instruction that only performs a move
if a certain condition is met. Our approach is more general
and applicable to a variety of systems. Other differences
are related to the end-goal of each work. Our work focuses
on studying and discussing a variety of issues related to
implementing ORAM in SGX, such as oblivious shuffling,
recursive position maps, and analyzing the specific design
factors that affect performance such as number of auxiliary
trees. ZeroTrace is more focused on system issues such
as addressing integrity (active adversary) using a Merkle
tree, supporting multiple back-end memory organizations
(DRAM and HDD), and handling the interruption in the
system by writing out the enclave state to untrusted storage.

4 PRELIMINARIES

In this section we discuss our execution model, threat
model, assumptions, terminology, and the limitations of
SGX that create challenges for this work.

4.1 Execution Model
Our model has two parties: the client and the server. The
server hosts both the enclave and the memory containing
the ORAM data. The goal is to host an ORAM with no
involvement from the client other than sending read/write
requests. The purpose behind this goal is that we assume
the client has limited processing power and limited memory
resources. The server creates an SGX enclave, which is then
considered part of the trusted computing base of the client.
We assume that our data is an array of N items. Fig. 1
illustrates the presented model.

The client sends an encrypted read/write request (for a
specific item) to the enclave host. The enclave host passes
the message to the enclave. The enclave decrypts the mes-
sage and executes the ORAM procedure on the server’s
memory, then returns the requested data to the client. In
this model the client does not perform any of the ORAM
processing, instead that work is done in the enclave. It is im-
portant to note that while the enclave hosts code and some
cached ORAM data, the actual ORAM data is stored on the
server outside the enclave. Data stored within the enclave
is automatically encrypted using the memory encryption
engine (MME) [30]. The main ORAM data, however, is



4

stored encrypted in the server’s main memory using a key
derived by the software running inside the enclave. The
MME is not involved in this part of the encryption.

4.2 Threat Model, Assumptions, and Constraints
We assume that our adversary has full privileges over the
server (i.e., root privileges). We assume that the adversary
will not perform a hardware attack against the CPU itself,
but we do allow them to observe the memory bus at any
time.

We adopt the standard security definition for ORAMs
described in [31]. Accordingly, the target is to enable the
client to read and write data blocks to and from the server
without allowing an adversary to infer:

• Which items (blocks) have been requested by the
client?

• What are the stored/read values?
• How many times has an item been requested?
• What type of request did the client issue (read or

write)?

A secure channel can be constructed between the client
and enclave. SGX provides a mechanism for the client and
enclave to establish a secret key for a secure channel using
remote attestation to share secrets. This remote attestation
protocol uses a modified Sigma protocol to facilitate a Diffie-
Hellman Key Exchange (DHKE) in order to establish the
shared key [32]. We rely on the correctness of this protocol
functions.

Memory accesses performed from within the enclave
are page-level oblivious. Unfortunately, even though data
stored within the enclave is encrypted before being stored
in physical memory, oblivious access is not provided. This
problem is distinct from the overall problem of using an
enclave to provide an ORAM. Due to the fact that ac-
cess to the enclave’s memory is not oblivious, a scenario
may emerge in which a malicious server could watch its
memory bus to determine the memory addresses being
accessed within the enclave. However, due to the design
of the memory system on Intel CPUs, recent work [22]
has found it reasonable to assume page-level obliviousness.
Page-level oblivious means that accesses to two different
memory addresses on the same physical memory page can
be assumed to be indistinguishable. However, in order to
protect against cache attacks that may be able to distinguish
at a finer granularity than page-level, in our experimental
section we also show performance results assuming cache
line obliviousness instead of page-level obliviousness.

Known side channels can be prevented, but exhaus-
tively analyzing them is outside the scope of this work.
Recently, research into side-channel attacks against modern
CPUs (as well the applicability of those side-channels to
SGX) has been skyrocketing. The attacks target a variety of
shared hardware resources on the CPU such as the cache [7],
[8], [10], [12], page faults [11], branch target buffer [9], direc-
tional predictor [6], etc. Where straight-forward, our design
incorporates protections against known side-channels. For
example, we assume page-level obliviousness due to the
existence of page fault side channels. (Although in the
event that a side channel allows for a finer than page-
level distinguishability of memory accesses, our results from

Section 8.4 show how the performance of the system will
be impacted.) We also ensure that procedures requiring
oblivious execution can fit on a single page and require the
same number of instructions to execute regardless of code
path. (In algorithm 2 for example, the time consumption of
every sequence is always the same.) In some cases, such
as detailed branch side-channels [9], [6], mitigating their
impact is not so straight-forward. While software based
mitigations have been proposed by the authors, they come
at a high performance cost. Given this, we assume that
these mitigations could be applied to our techniques, but
we consider a full analysis of their performance impact to
be outside the scope of this work.

We consider this assumption regarding side channels
reasonable primarily because side-channel mitigation is its
own research area that is orthogonal to this work, and the
prevention approaches being developed in this area can be
applied to this work.

4.3 Terminology

A is an array of N items which should be stored on the
server. Each item in A has a size of b bytes. E is the size
of the enclave. The initialization process is the process of
storing the initial values ofA on the server. The identifier for
an element (item) inA is its original index inA. Accordingly,
the client requests an item by sending its index to the server.
We denote a request from the client for a specific item in
A using its index from the server as a read request and a
request from the client to store an item in a specific index in
A as a write request.

4.4 Challenges Due to Limitations of SGX

There are two major limitations of SGX that make this work
challenging. In this section we will discuss those limitations.
The details of how we overcome these limitations for each
of our three ORAM systems are described in later sections.

4.4.1 Limited Memory Space

While it depends on the firmware, most SGX machines can
allocate a maximum of 64 MB or 128 MB of memory to
the enclave page cache (EPC) that is shared among all en-
claves. This memory is allocated at boot time and cannot be
changed. This means that, in the best case, our enclave has
access to 128 MB of secured memory assuming a generous
BIOS setting and no other enclaves running on the system.
As such, our ORAM algorithms need to be modified to take
into account this specific amount of available memory.

4.4.2 Lack of Memory Access Obliviousness

As mentioned in Section 4.2, memory accesses from within
the enclave are only page-level oblivious. When the enclave
is accessing its own memory, the page addresses being
accessed can be seen by an attacker. As such, our ORAM
algorithms will need to be modified to consider the oblivi-
ousness of their own internal memory accesses.



5

5 BUILDING LINEAR ORAM USING SGX
In this section, we show how to build a linear ORAM
using SGX. Then we explain in details the implementation
of square-root ORAM and path ORAM using our model.
Linear ORAM is considered to be the trivial method for real-
izing ORAM. We demonstrate its SGX implementation here
because it helps illustrate many of the challenges associated
with constructing an ORAM using SGX.

5.1 Initialization

The initialization process is done as follows: Each item is
encrypted using a block cipher (AES). The same key is
used for all items, but the IV for each item is unique in
order to ensure semantic security. IVs are chosen using
a simple, incrementing counter. Throughout this process,
the encrypted data is stored in memory on the server, but
outside of the enclave.

5.2 Item Access

Under the simplest assumption, a lookup in a linear ORAM
requires the client to read the entirety of the encrypted data
and find the element it wants. By reading all of the data,
obliviousness is maintained. Given that the entire contents
of the ORAM cannot fit inside the enclave, the data is read
in fixed size chunks less than the available memory size.
Regardless of which chunk contains the requested items, all
chunks are requested.

A client performs a memory access as follows:

1) The client sends a request to the enclave using the
secure channel.

2) The enclave reads all data in chunks from the
server’s main memory (regardless of whether the
client’s request is a read or write).

3) For each chunk:

a) The chunk is decrypted.
b) For a read, the requested item is retrieved if

it is available in the chunk.
c) For a write, the given item is written if it

should be stored in the chunk.
d) The items in the chunk are re-encrypted us-

ing new IVs.
e) The chunk is written back to the server’s

main memory.

4) The enclave returns the request item to the client, or
in the case of a write, returns a dummy value.

It should be noted that even though this is an extremely
inefficient ORAM implementation, using SGX means that
almost the entirety of the data traffic and computation
occurs at the provider’s site (between the enclave and the
data store), not at the client’s. This is not the case in a
standard ORAM implementation.

5.3 Complexity Analysis

The algorithmic complexity for data initialization is O(N ).
The complexity of a single memory access is also O(N ).

5.4 SGX Influenced Design Choices
The limitations of SGX described in Section 4.4 influence our
design in the following ways.

5.4.1 Limited Enclave Memory Space
The data is read into the enclave in chunks small enough to
fit inside the enclave’s limited memory space.

5.4.2 Lack of Enclave Memory Obliviousness
The lack of enclave obliviousness could be a major issue for
even this simple ORAM. The core of the problem occurs in
steps 3b and 3c above. An attacker monitoring the memory
bus would be able to identify which chunk was read or
written by simply noticing that the algorithm only performs
a read or write during those steps if the current chunk
contains the item being accessed. The attacker can also
determine which page within the enclave contained the
item, further narrowing down which item is it. This violates
the basic protections provided by ORAM.

In order to overcome this issue, we have designed an
approach to provide a basic, page-level oblivious memory
access from within the enclave. Pseudo code for internally
oblivious access is shown in Algorithm 1.

When performing a memory access (read or write) on a
chunk, we ensure that exactly one item from every physical
page is read (source pages), one item is written to the page
containing the location of the result (destination page), and
one item is written back to the source page again. Every
page in a chunk has this exact access pattern regardless of
whether the requested access is a read or a write or even if
that page has the item requested. Consider lines 4 through
8 in Algorithm 1. If the source page contains the item we
want, then we read that item and write it to obv_bk[1],
which is stored on the destination page. If the source page
doesn’t contain the item we want, we read any value and
write it to dummy location obv_bk[0], which is stored
on the destination page. Since obv_bk[0] and obv_bk[1]
are located on the same page, an attacker is unable to
distinguish between writes to either one. This ensures the
process of reading an item from the page and storing it in
the destination memory location obv_bk[1] is oblivious.
Next, in lines 9 through 15 we handle the situation where
the access is a write. Here there are three scenarios: This is a
write to this page, and we need to store the new block in the
array; this is a read to this page, and we need to perform a
dummy write by just writing back the value we read; this is
an access to a different page and we need to write back the
dummy value we read previously.

In summary, the algorithm guarantees that an adversary
will not know which item has been read/written from
within the enclave, and will not know whether a read or
write has occurred. It is also immune to a side-channel
timing attack since it always consumes the same amount
of time.

6 SGX SQUARE ROOT ORAM
When building a square root ORAM (described in
Section 2.2.2) on SGX there are a number of challenges that
need to be solved.



6

Algorithm 1 Internally Oblivious Memory Access From Within an Enclave
1: procedure obliv access item(Arr, idx, size, new block, op)
2: obv bk[2] = new block
3: for z = 0 To size-1 do
4: if idx ≥ z and idx<z + PageSize then
5: obv bk[1] = Arr[idx]
6: else
7: obv bk[0] = Arr[z]
8: end if
9: if op ≡′ W ′ and idx ≥ z and idx<z + PageSize then

10: Arr[idx] = obv bk[2]
11: else if idx ≥ z and idx<z + PageSize then
12: Arr[idx] = obv bk[1]
13: else
14: Arr[z] = obv bk[0]
15: end if
16: z = z + PageSize
17: end for
18: return obv bk[1]
19: end procedure

1) Unless the number of items stored in the ORAM
(N ) is relatively small, then the data in the ORAM
(A) must be passed to enclave in chunks since
enclave memory is limited.

2) Shuffling requires storing a permutation map, and
that map may be too large to fit inside the enclave.

3) Even if the permutation map were to fit inside the
enclave, since we pass A in chunks, the permuted
location may not be available inside the enclave at
the appropriate time. For example, during a reshuf-
fle, let us assume that only 30 items out of 120 items
can fit inside the enclave and the item in location
15 is permuted to location 111. Since location 111
is currently not available in the enclave, we cannot
move the item to its new location.

6.1 Initialization

At a high level, the initialization of a SQRT ORAM is fairly
straightforward: The items in the ORAM are randomly shuf-
fled, encrypted, and uploaded to the server. A permutation
map, showing the location of each item, is then stored in
the enclave and used as part of the lookup process later.
With SGX, storing a permutation map inside the enclave
is infeasible for large values of N , so an alternative is
needed. As such, the items in the ORAM are randomly
shuffled using an efficiently computable pseudo-random
permutation (PRP) function [33]. By making use of a PRP,
there is no need to store a full mapping containing the
permuted locations of all items in the ORAM; they can be
derived using the function. The function uses a randomly
generated key which is stored inside the enclave.

We note that by using a PRP instead of a permutation
map, we address the problem of accessing the permutation
map obliviously. Traditional shuffling techniques such as
fisher-Yates [34], the riffle shuffle [35] and Thorp shuffle [36]
are not oblivious by design since an adversary can see the

position that an element is shuffled to. An additional issue is
that a traditional shuffling algorithm requires a permutation
map, and accessing it to get the permutation value would
leak the access location or require the map itself to be stored
in yet another oblivious RAM. A PRP does not have this
problem since the permuted value is a calculated value.
However, even a PRP still leaves open the possibility of a
side-channel attack which analyzes the code and data access
patterns of the PRP itself. To eliminate this possibility, our
PRP performs, for any value, the same number of steps
using an array of two blocks, storing the ”real” value in
one block and all dummies in another.

6.2 Item Access

The general workflow of a data access in the SGX square
root ORAM is:

1) The client sends the request to the enclave using the
secure channel.

2) The enclave searches for the requested index in
the shelter (which resides in the enclave not on
the client as in traditional SQRT ORAM) using a
technique that will be presented in Section 6.5. If it
is not found, the enclave calculates the permutation
value v1 of the requested index and requests the
item stored in v1 from the server. If it is found,
the enclave calculates the permutation value v2 of
a dummy index and requests the item stored in v2
from the server. Since we know that a new initial-
ization is needed after

√
N accesses, it is guaranteed

that every dummy item is accessed at most once.
3) The server reads the requested item and sends it to

the enclave.
4) The enclave decrypts it. If the item has not been

requested before, then it is stored in the shelter.
In case of a write request, the value which was
provided by the client is stored into the shelter. If
the item has been requested before, then whatever



7

sent by the server is a dummy and we retrieve the
requested item from the shelter.

5) The enclave sends the requested item to the client,
or in the case of a write, returns a dummy value.

6.3 Re-Initialization
As the system executes, the enclave counts the accesses and
reshuffles the ORAM after

√
N accesses have occurred. This

re-initialization process includes the following steps:

1) A new random key is created and stored in the
enclave in order to calculate a new PRP.

2) The enclave reshuffles the contents of the ORAM
using each item’s new location according to the PRP.

Step 2 in this process is quite challenging with SGX because
we assume the entire contents of the ORAM cannot fit into
the enclave.

Given this restriction, special care must be taken dur-
ing reshuffling. Several oblivious shuffling algorithms are
available such as the Melbourne shuffle [37], AKS[38], Zig-
Zag shuffle [39], randomized shellsort[40] and Batcher’s
network[41]. We chose the Melbourne shuffle since it has an
access overhead of O(

√
N ), which is the best among all other

algorithms. In addition, since the enclave is on the same
machine as the server, the high message cost of O(

√
N) is

not a big concern.
We make use of the Melbourne Shuffle with minor

modifications for SGX. The details of our implementation
can be found in Appendix A. The approach operates in two
stages. First, the existing ORAM array A is processed as
chunks (buckets of size

√
N each) one chunk at a time into a

larger, server-side temporary array T . Then, T is processed
to become the newly shuffled ORAM, O. The process of
creating T differs from a standard ORAM implementation
because some elements (the visited elements) have their real
values in the shelter, not on the server. Algorithm 2 shows
our approach to processing the array A into T one chunk at
a time while considering the values in the shelter. Oblivious
writes are needed in lines 7 and 10 to prevent an adversary
from knowing if the item is in chunk ch and if it is in the
shelter. Accordingly, this hides if the item was requested
by the client. Since all blocks are encrypted, the chunk is
decrypted and processing T blocks start (lines 13 and 14).

Note that repeatedly requesting the same element i will
reveal no information since for each

√
N accesses, the server

will access the permuted position of i only once: to fulfill
the first request. After that,

√
N -1 distince dummy locations

will be accessed before re-initialization since i is already in
the shelter.

6.4 Complexity Analysis
The main time and space requirements of the enclave are
the initialization/re-initialization requirements. If we ignore
the cost of re-initialization for the moment, fulfilling client’s
requests requires O(

√
N ) time since the shelter should be

scanned.
The details of our shuffling algorithm are available in

Appendix A. An overview is available here. Our shuffle
reads the input array A as buckets of size

√
N into the

enclave. For each bucket B, the algorithm prepares output

Algorithm 2 Filling T one Chunk at a Time
1: procedure Reinitialize(chunk ch)
2: obv bk[0] = first block in ch
3: for every element i in the shelter do
4: obv bk[1] = i
5: if perm(obv bk[1].pos) belongs to ch then
6: encrypt obv bk[1]
7: obliv-write obv bk[1] back to ch
8: else
9: encrypt obv bk[0]

10: obliv-write obv bk[0] back to ch
11: end if
12: end for
13: decrypt all items in ch
14: fillT(ch)
15: end procedure

blocks of size p logN each, where p is a constant. For the
shelter, an array of size

√
N items and an integer array

of size
√
N for storing items’ indices are needed. Unfor-

tunately, we need both
√
N items arrays at the same time

during the re-initialization process. Three extra short integer
arrays are needed for Melbourne shuffle. One p logN output
block is needed. Accordingly, the space requirements is
O(
√
N ) items. We can estimate the number of items which

the enclave can handle by solving the equation:

E =
√
N × (2× b+ 10) + ε (1)

where E is the size of the enclave, b is the size of an item,
and ε is the size of some extra variables which are needed in
our routines such as obv bk (Algorithm 2). Assuming that
the enclave can handle only 64MB, the size of an item is 16
bytes, and ε is 1000 bytes, the enclave can handle cases with√
N = 1.5 million items. So, unless the server has a storage

limitation, the enclave can handle cases with N= 1012 items.
Let ` be the time cost of one oblivious access inside the

enclave. Since
√
N is the maximum size of an array in the

enclave and ` ≤
√
N/PageSize, the access overhead for

our technique is O(N/PageSize).

6.5 SGX Influenced Design Choices

We will now discuss the SGX specific challenges for our
square root ORAM.

6.5.1 Limited Enclave Memory Space

There are two places in this algorithm where we made
choices in order to accommodate the memory constraints
of the enclave.

• Shelter. We made sure that in all stages, the amount
of memory that is needed in the enclave is around√
N × (2× b+ 10).

• Permutation Map. The limited memory space made
it infeasible to store a permutation map inside the
enclave. Instead, we made use of a pseudo-random-
permutation function.

6.5.2 Lack of Enclave Obliviousness

There are two instances where internally oblivious access is
required.



8

• Shuffling. As already mentioned, existing shuffling al-
gorithms are not designed to be oblivious. Our obliv-
ious Melbourne shuffle, however, ensures that all rel-
evant reads and writes to

√
N chunks, counter Accs,

counters, and ptrs are oblivious. To prevent an
adversary from concluding the number of items in
stage 1, we made each iteration require p logN steps
regardless of the number of “real” items in each
block.

• Item Access. During item access, a search of the shelter
must occur inside of the enclave. This search needs
to be done obliviously so as not to reveal the identity
of the shelter item found. Algorithm 1 (explained in
linear ORAM) is not suited for this, as it assumes that
the items being searched are stored sorted by index.
In this case, the shelter items can be stored in any
order. As such, a modified algorithm is available in
Algorithm 3 which searches each entry for the item.
The same design principals that make Algorithm 1
page-level oblivious also apply to this algorithm. In
Algorithm 3, obv bk[0] is used for dummy accesses
and obv bk[1] for the real item. If the operation is a
write, then element z is replaced with the new value,
otherwise, z is replaced by one of obv bk two values
(lines 10-16).

Algorithm 3 Internally Oblivious Memory Search From
Within an Enclave
1: procedure obliv access item(Arr, idx, size, new block, op)
2: obv bk[2] = new block
3: obv bk[1] = NOT FOUND
4: for each element z in Arr do
5: if idx = z then
6: obv bk[1] = idx
7: else
8: obv bk[0] = z
9: end if

10: if idx = z then
11: z = obv bk[1]
12: else
13: z = obv bk[0]
14: end if
15: z = (op ≡′ W ′ and idx = z) × obv bk[2] + (op ≡′ R′ or

idx 6= z)× z
16: end for
17: return obv bk[1]
18: end procedure

6.6 Security Analysis

In this section we present a step-by-step security analysis for
a request. We assume that the key obtained by the attestation
process is secure and that the encryption/decryption algo-
rithm implementation (AES) for a request is side channel
resistant.

We show that the initialization does not leak informa-
tion:

• In the first stage of initialization, Algorithm 2 guar-
antees that returning visited items back to A’s chunk
(ch) consumes the same amount of time no matter
how many items are in the shelter since the shelter is
always scanned linearly. ch is, at this stage, securely
populated with real items which were in the shelter.

• The number of “real” items to be filled in a T block
is not leaked since dummy operations are added in
Algorithm 6 and all data structures in it does not leak
information since they are accessed obliviously

√
N

times.
• Stage 2 also leaks no information since each T block

will be linearly scanned and all accesses to the output
array are oblivious.

When there is a new request, Algorithm 3 scans the shelter
in a fixed time since the shelter has a fixed size and the
number of executed statement is always the same. Line 15
hides the type of operation.

The result of shelter scanning would lead to the decision
of sending either a dummy request or a “real” request to
the server. Such a choice is hidden by using using the
two elements of obv bk, which are contained on the same
physical page.

When the enclave receives the item from the server, it has
to be stored in the shelter which is done using one oblivious
write.

Accordingly, for two sequence of requests seq1, seq2
with the same number of requests, an adversary has no
way of distinguishing between them despite the fact that
they have different memory access pattern. An adversary
has no way of linking one input with a specific memory
access patterns. Despite the fact that our implementation
has if-else statements, all such statements are balanced in
order to eliminate side channel attack possibilities [42].

7 SGX PATH ORAM
When building a path ORAM on SGX there are a number of
challenges to be solved:

• Since the memory access of the enclave is not obliv-
ious, an adversary may be able to guess which node
in the tree had the item by watching the memory
access of the stash.

• Ideally, Path ORAM assumes that a position map can
fit in the client memory. Since it requires O(N ) space,
this may be a problem with SGX. An alternative
approach to storing the position map is required.

7.1 Initialization

After creating items’ tree and other auxiliary trees (if
needed) by the server, the enclave creates a position map
with the size of a threshold Pos Map Limit which we
assume is known to all parties. The enclave encrypts all
trees. After creating the position map, the enclave fills the
position map (recursively if necessary) and then initializes
items one by one.

Pseudo code is shown in Algorithm 4. Every tree has a
stash with the same id. Function add_to_stash(tree_id,
i, value, new_path) adds item i to the stash of tree
tree id and store the id of its new path with it (new path).
We define the id of a path by the number of the leaf with
which such path starts. value is also stored in i carrying the
return value from the recursive function (i.e. the new path
for i in the next tree). In other words, the item is stored in the
stash in addition to its new path id in the current tree and its



9

Algorithm 4 Initialization for path ORAM
1: procedure initailization
2: l = Number of trees
3: for i = 1 to size of positionmap do
4: if there are auxiliary trees then
5: positionmap[i] = init rec(i,trl,random value)
6: else
7: positionmap[i] = random value
8: end if
9: end for

10: for every item i in Array A do
11: path = random value
12: new path = random value
13: add to stash(0,i,val i,new path)
14: set position map(i,new path);
15: read path(tr0, path)
16: write path(tr0,path)
17: end for
18: end procedure
19:
20: procedure init rec(i,trl,path)
21: i1= i×2
22: i2= i×2+1
23: new path = random value
24: read path(trl, path)
25: if trl is not tr1 then
26: v1 = init rec(i1,trl−1,random value)
27: v2 = init rec(i2,trl−1,random value)
28: else
29: v1 = random value
30: v2 = random value
31: end if
32: add to stash(l, i1, v1, new path)
33: add to stash(l, i2, v2, new path)
34: write path(trl,path)
35: return new path
36: end procedure

new path id in the next tree (trl−1) which is returning from
the recursion. Note that the read and write path methods
are applied to the old path of the item, not the new one.

Function init rec initializes every element in the posi-
tion map (lines 4-8). The recursion continues in init rec
until reaching tr1 which includes the position map of the
items’ tree (tr0).

The path id for a specific item in tree trl is needed in tree
trl−1, but we also store it in the stash for tree trl. This is to
eliminate the need for expensive calls to get position map
in every write path call. Functions set position map and
get position map have almost the same structure. They
both call the recursive function get pos rec which will
reassign targeted items to new paths. Pseudo code for
get position map and set position map is shown in al-
gorithm 5. v1 in line 38 is the future path id of i1 in the
next tree trl−1, while pos1 is the current path id of i1 in the
next tree (trl−1). While new path is the new path id of both
i1 and i2 in the current tree. new pos is a public variable
which carries the final result for get position map.

7.2 Item Access

Assuming all trees have been initialized, a request can be
fulfilled as follows:

1) The client sends the request to the enclave using the
secure channel.

2) The enclave uses get position map (Algorithm 5)
to determine the path (directly or recursively) that

has the requested item. Line 11 in
get position map function should be executed
obliviously, otherwise, an adversary can detect the
requested index.

3) Read path procedure: reads all nodes on the path
returned from
get position map into the stash.

4) The requested item is assigned to a new path. Line
25 in set position map (Algorithm 5) should be
executed obliviously, otherwise, an adversary can
detect the requested index.

5) The requested item is sent to the client.
6) Write path procedure: write items into nodes start-

ing from the leaf to the root. For every item i in
the stash, we check if i is mapped to a path which
intersects with the current node v. This checking is
done by knowing the current level in tree and the
initial leaf which the path starts from. Accordingly,
you can easily determine the range of leaves that
have v in their paths.

If i is mapped to a path which intersects with the current
node v, we move it to a temporary node tmp which is
initially filled with dummies. If all Z dummies in tmp are
replaced with real items, tmp is encrypted and copied to v.
Then we move upward to check the next node in the path.

7.3 Complexity Analysis

As mentioned before, the access overhead for the tra-
ditional version of this technique is (logN)2. The time
cost of one oblivious access to the position map is
Pos Map Limit/PageSize. Accordingly, the access over-
head is O((logN)2 Pos Map Limit/PageSize).

7.4 SGX Influenced Design Choices

The limitations of SGX described in Section 4.4 influence our
design in the following ways.

7.4.1 Limited Enclave Memory Space

Due to the enclave’s memory limitations, in many cases the
entire position map cannot be stored inside the enclave. As
such, we adopted a recursive position map described in [31].
This involves storing the position map itself in another
ORAM, O1, and storing the position map for O1 at the
client. If this position map is still too large, then another
ORAM O2 is built to store the position map for O1, etc. Fig.
2 shows an example for mapping i=4.

We will call these additional trees auxiliary trees. This
recursive approach reduces the efficiency in terms of both
space and time, as it requires additional queries to the
server and a larger number of auxiliary trees stored on the
server. This trade-off is required in order to overcome the
SGX limitation. It may be tempting, instead of using the
recursive technique, to store the (encrypted) position map
on the server and to process it in a streaming fashion during
a request. However, that would degrade the performance
since processing each request would require O(N/E) reads,
where E is the size of the enclave. Each batch will be then
scanned linearly (page by page) inside the enclave.



10

Algorithm 5 get position map And set position map
1: procedure get position map(i)
2: if there are no auxiliary trees then
3: return positionmap[i] (Obliv)
4: else
5: index = i
6: for every auxiliary tree do
7: index = index / 2
8: end for
9: l = Number of trees

10: original i = i
11: positionmap[i] = get pos rec(trl,index, positionmap[i],-1)

(Obliv)
12: end if
13: return new pos
14: end procedure
15: procedure set position map(i,new value)
16: if there are no auxiliary trees then
17: positionmap[i] = new value (obliv)
18: else
19: index = i
20: for every auxiliary tree do
21: index = index / 2
22: end for
23: l = Number of trees
24: original i = i
25: positionmap[i] = get pos rec(trl,index,

positionmap[i],new value) (Obliv)
26: end if
27: end procedure
28: procedure get pos rec(trl,i,path,new value)
29: i1= i×2
30: i2= i×2+1
31: new path = random value
32: read path(trl, path)
33: if trl is not tr1 then
34: temp=obliv access item(stash l,i1,size of stash l,Null,’R’)
35: pos1 = temp.value
36: temp=obliv access item(stash l,i2,size of stash l,Null,’R’)
37: pos2 = temp.value
38: v1 = get pos rec(trl−1,i1,pos1,new value)
39: v2 = get pos rec(trl−1,i2,pos2,new value)
40: store i1 and i2 back in stash l
41: else
42: temp=obliv access item(stash l,original i,size of stash

l,Null,’R’)
43: new pos original i =temp.value
44: temp.value = temp.value×(op ≡′ R′) + new value×(op ≡′

W ′)
45: end if
46: write path(trl,path)
47: return new path
48: end procedure

7.4.2 Lack of Enclave Memory Obliviousness
There are two times during the path ORAM algorithm that
we need to consider enclave oblivious memory accesses.
First, when getting/setting the leaf id from the position
map, we need to make use of Algorithm 1. Second, when
searching for an element in the stash we need to make use
of Algorithm 3.

7.4.3 Security Analysis
In this section we present a security analysis of our ap-
proach. We assume that the key obtained by the attestation
process is secure and that the encryption/decryption algo-
rithm implementation (AES) for a request is side channel
resistant. These are the same assumptions made for the
analysis of the SQRT ORAM.

• During initialization, the position map is filled with
random data. In terms of security, initialization can

Fig. 2: Recursive Position Map

be seen as issuing N requests. Accordingly proving
that a request doesn’t leak any information and is
not distinguishable from another request, in term of
memory access pattern, is satisfactory to prove that
initialization is secure.

• When an enclave receives a request, its access to
the position map to find the path ID is performed
obliviously.

• When the server reads a path, the enclave stores
it obliviously in the stash item by item using
add_to_stash function mentioned in Algorithm 4.
Since both the number of items in a node and the
height of the tree are constants, no information may
be leaked when a path is read.

• When a write-path is executed, exactly one scan of
the stash is required for each node. Therefore, an
adversary has no way to guess the number of “real”
items in a node.

• In Algorithm 5, an adversary can differentiate be-
tween the processing of each tree since the if-else
statement in line 33 is not balanced, however, such
information has no benefits to an adversary. The
processing of each tree per se is resistant to timing
side channel attacks.

Overall, since accessing the position map, read-path,
write-path and recursive technique don’t reveal informa-
tion, two sequences of requests with the same length are not
distinguishable despite the fact that they may have different
memory access (different tree paths).



11

103 104 105 106 107

Number of Items in the ORAM (N)

100

101

102

103

104

T
im

e
to

C
o

m
p

le
te

1
0

,0
0

0
A

cc
es

se
s

(s
)

Time Comparison Between Our Approach and Traditional Path ORAM

SGX Path ORAM

SGX SQRT ORAM

SGX Linear ORAM

Traditional Path ORAM

Fig. 3: Time Comparison Between SGX ORAMs and Tradi-
tional Path ORAM

8 EXPERIMENTAL EVALUATION

In this section we will show the results of testing the
implementation of our enclave-based ORAM techniques.

8.1 Experimental Setup
We implemented SGX-based linear, SQRT, and path
ORAMs1. Our implementations are built on the top of Intel’s
SGX SDK version 1.9 as well as Intel’s IPP cryptographic
library. Our tests were run on a machine with 32 GB RAM
and an Intel(R) Core(TM) i7-6770HQ 2.60GHz CPU with
an enclave’s maximum size of 128 MB. In all our tests,
Z=4 (the number of blocks inside each node) unless it is
mentioned otherwise. The size of a data block is 16b unless
mentioned otherwise. In order to determine our stash size
for Path ORAM, we look to existing work [1] showing that
when Z ≥ 4, the stash size is to be bound to ω(logN) [1].
As such, we used stash size of 10000 items in general and
100000 whenN ≥ 107, which was enough not to overflow in
any test. In SQRT ORAM, the number of reshuffling clearly
depends on N . When N = 106 for example, the reshuffle
is done every 1000 (

√
106), so 10000 accesses requires 10-

11 shuffles. If N = 107 then reshuffling occurs every 3163
accesses which means 3-4 shuffles during the experiment.

During performance tests there are always two processes
running: The client and the server of Fig. 1. The client
process initiates access requests, while the server process
initializes and passes traffic to and from the enclave.

Our results include the time for initialization of the
ORAM as well as the time for data accesses.

8.2 Overall Performance
Our first set of tests show the overall performance of our im-
plementations. We include 4 ORAM implementations: our
three SGX ORAMs, and finally our own implementation of
a non-SGX path ORAM in which all stashes and the position
map are stored on the client. In this case, the client issues

1. The source code of our implementation will be made available
coinciding with the publication of this work.

10000 20000 30000 40000 50000 60000 70000 80000 90000

Number of Accesses

100

200

300

400

T
im

e
(s

)

Time Consumption Comparison for SQRT and Path ORAMs

SGX SQRT ORAM

SGX Path ORAM

Fig. 4: Time comparison for SGX SQRT and SGX Path
ORAMs. N (number of items) is 106 in all experiments.

all read- and write-path commands to be executed on the
server. Unfortunately, the source code for OBLIVIATE [26]
is not available so we could not include it in the comparison,
while [28] and [27] have different scopes of work.

Fig. 3 shows the elapsed time for 10,000 accesses using
all four implementations. As expected, among the SGX
ORAMs, linear ORAM has the worst performance for all
of our testing. This is different from the findings of other
traditional ORAMs in which linear ORAM has the best
performance when N is smaller than a break-even point [3].
This is due to the fact that the communication cost between
the client and the server is relatively high in traditional non-
linear ORAMs while all ORAM management is done on the
server in our model.

The traditional path ORAM has a curve similar to that
of the SGX path ORAM, but is still outperformed by the
implementation which includes the enclave despite the fact
that each request in the SGX implementation incurs the
AES encryption/decryption overheads in addition to the
costs of moving memory across the enclave boundaries
(ECALL/OCALL). This is due to the fact that all ORAM
procedures are executed by the server instead of the client.
This experiment should be considered the best case scenario
for the traditional path ORAM, as the client and server are
located on the same physical machine. The performance
difference would be further exacerbated if the client and
server were separated by a slow Internet link due to fact
that in the traditional approach the client itself handles the
steps for reads and writes.

8.3 SGX Path vs SGX SQRT ORAM

We also compared the performance of the SGX Path and
SQRT ORAMs when the ORAM size (N) is fixed and the
number of items being accessed varies. The reason this is
interesting is that it can illustrate the performance trade-
off between the two with regards to how each handles the
initialization of the ORAM data. Fig. 4 shows the results. As
can be seen, the performance of the SQRT ORAM depends
heavily on the number of accesses, while the performance



12

25 26 27 28 29 210 211 212

Assumed Oblivious Block Size (bytes)

200

250

300

350

400

450

500

550

600

T
im

e
(s

)
Performance for Various Oblivious Block Size Assumptions

SGX SQRT ORAM, N=107

SGX Path ORAM, N=107

Traditional Path ORAM, N=107

Fig. 5: Performance for Various Oblivious Block Size As-
sumptions

of path ORAM does not. The reason is that path ORAM has
a very intensive initialization process following by very fast
individual accesses. The difference in magnitude between
the initialization time and access time is so large that in
this experiment the number of accesses had no discernable
impact on the performance. SQRT ORAM, on the other
hand, better amortizes the cost but it has a higher overall
overhead. This means that for a small number of accesses
SQRT ORAM is faster, but after a certain point path ORAM
will lead to significant performance gains.

8.4 Effects of Page-Size Assumption
Although our work assumes that the SGX protected mem-
ory has page-level obliviousness, we recognize that recent
work in side-channels indicates that a finer granularity may
be required. Changing this assumption will impact the algo-
rithm performance because the oblivious access portions of
the algorithms will need to operate on smaller block sizes.
For example, Algorithm 3 needs to run for each oblivious
block of data, so smaller block sizes will result in the
algorithm running more. We investigated the performance
impact of assuming obliviousness for smaller block sizes.

Fig. 5 shows the performance of the SGX SQRT and SGX
path ORAMs with N = 107, assuming different granulari-
ties for assumed obliviousness. As can be seen, the assumed
obliviousness granularity impacts the SGX SQRT ORAM
much more than the SGX path ORAM. For comparison
purposes, Fig. 5 also includes the performance of the non-
SGX, traditional path ORAM for this N value. Given that
the traditional ORAM makes no attempts at obliviousness,
assumed obliviousness has no impact.

8.5 Additional Path ORAM Tests
We study the effect of the size of position map (and conse-
quently, the number of auxiliary trees) on the performance
of path ORAM by using different thresholds for the size of
position map. Table 1 shows expected negative correlation
between time and the threshold of the position map. How-
ever, the results suggest that unless the increase in threshold

104 105 106 107

Number of Items in the ORAM (N)

100

101

102

103

104

T
im

e
to

C
o

m
p

le
te

1
0

,0
0

0
A

cc
es

se
s

(s
)

Time Comparison Between Our Approach and ZeroTrace

SGX Path ORAM

SGX SQRT ORAM

SGX Linear ORAM

ZeroTrace Path ORAM

ZeroTrace Circuit ORAM

Fig. 6: Time Comparison Between Our Approach and Zero-
Trace

decreases the number of trees, no significant improvement
in performance is noticed.

8.6 Comparison to ZeroTrace
In this section, we compare our system to ZeroTrace. For our
first experiment, we measured the time to both initializing
the ORAM and performing 10,000 accesses on it for a variety
of ORAM sizes. Fig. 6 shows the results. As can be seen, Ze-
roTrace outperforms our SGX path ORAM implementation
for larger N values, while our approach is faster for smaller
N values. The reason for this is that, ZeroTrace is generally
faster when it comes to initializing the ORAM. Our faster
results for N ≤ 105 is due the fact that our system doesn’t
need to use a recursive position map for small N values,
while ZeroTrace always uses a recursive position map. For
largerN values both systems are using a recursive map, and
ZeroTrace’s faster initialization time bears fruit.

Next, we analyzed the time taken to perform the accesses
after ORAM initialization has occurred. Table 2 shows these
results. As can be seen, our approach has faster access times
than ZeroTrace.

Given these two results, we performed an additional
experiment where we held the number of items in the
ORAM constant at N = 106 (just above the cross-over point
in Fig. 6) and varied the number of accesses. We considered
the total time to initialize the ORAM and perform the
accesses. The results are shown in Fig. 7. As can be seen, the
results are consistent with our previous findings. For a small
number of accesses (10,000), the initialization time is a larger
part of the overall time, and ZeroTrace is slightly faster than
our approach. As the number of accesses increases, however,
our advantage grows.

We summarize our contribution over ZeroTrace as fol-
lows:

• Despite the fact that ZeroTrace implements two
ORAMs (path and circuit), they are almost the same.
The main difference is the eviction policy. We have
implemented three different ORAMs (path, SQRT,
and linear) with different challenges.



13

N Size of position map Trees Total Time Initialization Time
1× 106 1× 105 3 445 441
1× 106 2× 105 2 383 381
1× 106 5× 105 1 300 298
1× 106 9× 105 1 327 324
2× 106 2× 105 3 1,631 1,627
2× 106 5× 105 2 1,440 1,436
2× 106 9× 105 1 1,289 1,284
3× 106 2× 105 4 6,624 6,617
3× 106 5× 105 3 5,403 5,399
3× 106 9× 105 2 3,202 3298

TABLE 1: Time consumption (in seconds) for SGX’s path ORAM for 10,000 accesses with different position map thresholds.

N ZT Path ZT Circuit Our Path
103 T T 0.05
104 0.15 0.31 0.05
105 0.23 0.49 0.06
106 0.32 0.72 0.08
107 0.41 0.9 0.3

TABLE 2: Access Times for our path ORAM, ZeroTrace (ZT)
path and circuit ORAMs. They are calculated by finding
the average access time of 10000 accesses. Initialization time
is excluded when calculating these averages. T indicates a
termination in the program.

10000 20000 30000 40000 50000 60000 70000 80000 90000

Number of Accesses

20

40

60

80

100

T
im

e
(s

)

Time Consumption Comparison for ZT ORAMs and Our Path ORAM

SGX Path ORAM

ZT Path ORAM

ZT Circuit ORAM

Fig. 7: Time Comparison Between ZeroTrace ORAMs and
Our Path ORAM using Different Numbers of Accesses. N is
106.

• While we rely on a page-level obliviousness in many
parts of our implementations, ZeroTrace relies on the
cmov instruction which is limited to x86 assembly.
We have tackled several different challenges in im-
plementing obliviousness when utilizing page level
obliviousness.

• As we show in the experimental section, our access
time outperforms ZeroTrace when our position map
is utilized (N is not big enough to activate the
recursive technique), approximately 107 items.

9 FUTURE WORK

This work takes traditional ORAM, which has two parties
(the client and server), and expands it to three parties (the

client, the enclave, and the server). We have taken special
care to ensure obliviousness between the enclave and the
server, but future work should consider potential informa-
tion leakage between the client and the enclave. There are a
few important aspects of this to consider:

1) Size of the query and response. If the client’s query
and/or the server’s response varies in size from
query to query, then this could be problematic. The
obvious solution (and the one we will claim in this
work) is simply to ensure that all queries and replies
are constant size. It would be interesting to further
investigate this and determine if other approaches
could be used that might allow more flexible queries
and responses.

2) The timing of the query and response. There are a
variety of potential timing side-channels to consider
here. One, which has been handled in this work, is
how long it takes the server to produce a response.
Another which we have not considered is how
much time passes between consecutive queries from
the client (assuming that a client is processing the
result of one query and using it to somehow pro-
duce another query). Can these timings reveal in-
formation about the operation and data the client is
using? Is the problem severe enough that the entire
client would also need to be executed obliviously,
negating the positive impact of moving ORAM into
SGX? These are interesting questions deserving of
future investigation.

10 CONCLUSION

In this work we analyze three oblivious RAM algorithms,
adapting them and implementing them using Intel’s SGX.
While SGX provides a way to protect the confidentiality
of the contents of the enclave, its limited enclave memory
size of lack of oblivious access to enclave memory required
adaptations to the existing ORAM algorithms. By making
use of SGX, we can shift almost the entirety of the compu-
tation and network traffic from the client to the enclave,
significantly lowering the effective overhead of using an
ORAM.

Our experimental results show that SQRT ORAM is a
good option for datasets with a large number of items
and infrequent accesses. Path ORAM, on the other hand,
is a preferable option for smaller datasets and with larger
numbers of access requests. Using today’s SGX technology,
SQRT ORAM can handle up to 16 × 1012 bytes of data



14

with a 64 MB enclave’s maximum size, while path ORAM
practically has no limit for the size of data since the stash
can be recursively stored.

ACKNOWLEDGEMENT

This publication was made possible by the NPRP award
NPRP X-063-1014 from the Qatar National Research Fund
(a member of The Qatar Foundation). The statements made
herein are solely the responsibility of the authors.

REFERENCES

[1] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path oram: an extremely simple oblivious ram
protocol,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013, pp. 299–310.

[2] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: Ramification, attack and mit-
igation.” in NDSS, vol. 20, 2012, p. 12.

[3] O. Goldreich and R. Ostrovsky, “Software protection and simula-
tion on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3,
pp. 431–473, 1996.

[4] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and software model for isolated execution,” in HASP@ ISCA, 2013,
p. 10.

[5] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel R©; software guard extensions
(intel R©; sgx) support for dynamic memory management inside
an enclave,” in Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, ser. HASP 2016. New
York, NY, USA: ACM, 2016, pp. 10:1–10:9. [Online]. Available:
http://doi.acm.org/10.1145/2948618.2954331

[6] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and
D. Ponomarev, “Branchscope: A new side-channel attack on
directional branch predictor,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New
York, NY, USA: ACM, 2018, pp. 693–707. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173204

[7] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing
access-based cache attacks on aes to practice,” in Security and
Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 490–505.

[8] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on aes,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2014, pp. 299–319.

[9] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside sgx enclaves with
branch shadowing,” in 26th USENIX Security Symposium, USENIX
Security, 2017, pp. 16–18.

[10] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP),
2015 IEEE Symposium on. IEEE, 2015, pp. 605–622.

[11] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing
page faults from telling your secrets,” in Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’16. New York, NY, USA: ACM, 2016, pp. 317–328.
[Online]. Available: http://doi.acm.org/10.1145/2897845.2897885

[12] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 990–1003.

[13] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans,
and J. Katz, “Revisiting square-root oram: Efficient random access
in multi-party computation,” in Security and Privacy (SP), 2016
IEEE Symposium on. IEEE, 2016, pp. 218–234.

[14] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious storage:
Making oblivious ram practical,” MIT-CSAIL-TR-2011-018, 2011.

[15] K.-M. Chung and R. Pass, “A simple oram,” CORNELL UNIV
ITHACA NY, Tech. Rep., 2013.

[16] I. Damgård, S. Meldgaard, and J. Nielsen, “Perfectly secure oblivi-
ous ram without random oracles,” Theory of Cryptography, pp. 144–
163, 2011.

[17] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in) security of
hash-based oblivious ram and a new balancing scheme,” in Pro-
ceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics, 2012,
pp. 143–156.

[18] P. Williams, R. Sion, and B. Carbunar, “Building castles out of
mud: practical access pattern privacy and correctness on untrusted
storage,” in Proceedings of the 15th ACM conference on Computer and
communications security. ACM, 2008, pp. 139–148.

[19] C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs, “Optimizing oram and using it efficiently for secure
computation,” in International Symposium on Privacy Enhancing
Technologies Symposium. Springer, 2013, pp. 1–18.

[20] O. Goldreich, “Towards a theory of software protection and sim-
ulation by oblivious rams,” in Proceedings of the nineteenth annual
ACM symposium on Theory of computing. ACM, 1987, pp. 182–194.

[21] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram
with o ((logn) 3) worst-case cost,” in International Conference on
The Theory and Application of Cryptology and Information Security.
Springer, 2011, pp. 197–214.

[22] S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and
N. Asokan, “The circle game: Scalable private membership test
using trusted hardware,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 2017,
pp. 31–44.

[23] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi,
G. Scerri, and B. Warinschi, “Secure multiparty computation from
sgx,” in International Conference on Financial Cryptography and Data
Security. Springer, 2017, pp. 477–497.

[24] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and
A.-R. Sadeghi, “Hardidx: practical and secure index with sgx,” in
IFIP Annual Conference on Data and Applications Security and Privacy.
Springer, 2017, pp. 386–408.

[25] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix:
An efficient oblivious search index,” in 2018 IEEE Symposium on
Security and Privacy (SP), May 2018, pp. 279–296.

[26] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE:
A Data Oblivious File System for Intel SGX,” in Symposium on
Network and Distributed System Security (NDSS), 2018.

[27] S. Cui, S. Belguith, M. Zhang, M. R. Asghar, and G. Russello, “Pre-
serving access pattern privacy in sgx-assisted encrypted search,”
in 2018 27th International Conference on Computer Communication
and Networks (ICCCN). IEEE, 2018, pp. 1–9.

[28] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “Ob-
fuscuro: A commodity obfuscation engine on intel sgx.” NDSS,
2019.

[29] S. Sasy, S. Gorbunov, and C. Fletcher, “Zerotrace: Oblivious mem-
ory primitives from intel sgx,” in Symposium on Network and
Distributed System Security (NDSS), 2017.

[30] S. Gueron, “A memory encryption engine suitable for general
purpose processors,” IACR Cryptology ePrint Archive, vol. 2016, p.
204, 2016.

[31] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious
ram,” arXiv preprint arXiv:1106.3652, 2011.

[32] Intel R©, “Sgx remote attestation,” https://software.intel.com/en-
us/articles/intel-software-guard-extensions-remote-attestation-
end-to-end-example, Jul. 2016.

[33] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC
press, 2014.

[34] D. E. Knuth, “Seminumerical algorithm (arithmetic),” The art of
computer programming, vol. 2, 1969.

[35] D. Aldous and P. Diaconis, “Shuffling cards and stopping times,”
The American Mathematical Monthly, vol. 93, no. 5, pp. 333–348,
1986.

[36] E. O. Thorp, “Nonrandom shuffling with applications to the game
of faro,” Journal of the American Statistical Association, vol. 68, no.
344, pp. 842–847, 1973.

[37] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal, “The
melbourne shuffle: Improving oblivious storage in the cloud,” in
International Colloquium on Automata, Languages, and Programming.
Springer, 2014, pp. 556–567.

[38] M. Ajtai, J. Komlós, and E. Szemerédi, “An 0 (n log n) sorting
network,” in Proceedings of the fifteenth annual ACM symposium on
Theory of computing. ACM, 1983, pp. 1–9.

[39] M. T. Goodrich, “Zig-zag sort: A simple deterministic data-
oblivious sorting algorithm running in o (n log n) time,” in Pro-

http://doi.acm.org/10.1145/2948618.2954331
http://doi.acm.org/10.1145/3173162.3173204
http://doi.acm.org/10.1145/2897845.2897885


15

Algorithm 6 Filling T as part of the Melbourne Shuffle
1: procedure FILLT(chunk ch)
2: if ch is the first chunk of data then
3: create new secret (key for permutation)
4: end if
5: sqrt of total =

√
N +

√
N

6: for every element i in ch do
7: z = perm(i.pos)/sqrt of total
8: obliv-increment counters[z]
9: obliv-increment counterAccs[z]

10: end for
11: for j=2 to sqrt of total do
12: counterAccs[j]+ = counterAccs[j − 1]
13: end for
14: for every element i in ch do
15: z = perm(i.pos)/sqrt of total
16: obliv-read counterAccs[z] to index
17: obliv-write a pointer to i in ptrs[index]
18: obliv-decrement counterAccs[z]
19: end for
20: curloc = 0
21: counter=0
22: obv bk[0]=dummy
23: for i=1 to sqrt of total do
24: for j= 1 To size of T block do
25: if counter < counters[i] then
26: obliv-read ch[ptrs[j+curloc]] to obv bk[1]
27: T [counter ++] = obv bk[1]
28: else
29: obliv-read random block to obv bk[1]
30: T [counter ++] = obv bk[0]
31: end if
32: end for
33: curloc+ = counters[i];
34: counter=0;
35: encrypt T block
36: store T block on server
37: end for
38: end procedure

ceedings of the 46th Annual ACM Symposium on Theory of Computing.
ACM, 2014, pp. 684–693.

[40] ——, “Randomized shellsort: A simple oblivious sorting algo-
rithm,” in Proceedings of the twenty-first annual ACM-SIAM sym-
posium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2010, pp. 1262–1277.

[41] K. E. Batcher, “Sorting networks and their applications,” in Pro-
ceedings of the April 30–May 2, 1968, spring joint computer conference.
ACM, 1968, pp. 307–314.

[42] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 2018, pp. 15–26.

APPENDIX A
SGX MELBOURNE SHUFFLE

While the details of the Melbourne Shuffle can be found in
[37], we provide a description here of the SGX-safe version
implemented for this work.

Let A be the input array and O be the output array. Both
arrays have the size of N items. Let T be a transitional array
in the server. T has the size of Np logN items where p is a
constant. The Melbourne shuffle has two stages:

• Stage 1: Filling T out of A. The idea is to read the
input array A as buckets of size

√
N into the enclave.

For each bucket B, we prepare output blocks of size
p logN each. Each block includes all the items in B
that are permuted to the corresponding bucket BT
in array T where BT has the size of p logN

√
N .

Fig. 8: Illustration of the first step in Melbourne shuffle
in SGX’s SQRT ORAM. The shaded parts are dummies.
Some of the T blocks with the size of p logN (such as the
third block) are all dummies which means that no items are
permuted to the corresponding block in T . In this example,
we assume that

√
N=3. Accordingly, we have 3 buckets in

A of size
√
N each and 3 buckets in T of size p logN

√
N

each.

p logN is most probably larger than the number of
items which belong to each block, so we fill the rest
of the block with dummy items. The locations of
the dummies in a block are chosen randomly. Fig.
8 illustrates this stage.
Algorithm 6 is the algorithm used to perform this
stage. In order to find the elements in bucket B
which belong to a specific output block, one can
naively scan B. However, since we have

√
N output

blocks for each bucket B, we would need N steps
for every bucket B. Accordingly, we would need
O(N
√
N logN ) time for the whole stage. This prob-

lem may not exist in a traditional Melbourne shuffle
(non-SGX client-server setting) since it is expected
that the client, on the contrary to an enclave, can
handle one block of size

√
Np logN items. To tackle

this issue, we use the following technique for each
bucket B in A:

– Three arrays are needed: counters,
counterAccs, and ptrs of size

√
N each.

– We scan bucket B once. We store the counts of
elements which belong to each output block in
counters so that counters[i] has the number
of elements which should be copied into the
i-th output block.

– We set counterAccs[1] = counters[1]. For 2 ≤
i ≤
√
N :

we set counterAccs[i] = counters[i − 1] +
counters[i]. counterAccs[i] contains the num-
ber of elements which should be copied to
all output blocks up to the i-th output block
(accumulated counter).

– Since counters and counterAccs are filled, it
is easy to fill ptrs array by scanning B again.
ptrs will ultimately have pointers to all ele-
ments in B (ptrs[1..counters[1]] has pointers



16

Fig. 9: An example showing the procedure of filling T out of
Bucket B. We assume that this is the first bucket in A. Note
that output block 2 which is missing has only dummies. This
procedure is repeated

√
N times since we have

√
N buckets

in A of size
√
N each. ptrs shows the permutation values of

the items to which it is pointing.

to items which are permuted to the first out-
put block). To fill an output block, we know
how many elements to fill and where these
elements are by utilizing our three arrays. Fig.
9 shows an example for processing a bucket
of size 10 where N=100. First element in array
counters is 3 since we have three 3 elements
in B permuted to the first output block in T .

With this technique, stage 1 requires only O(N logN )
processing time. However, it requires an extra space
of 3 ×

√
N short integers (not items), assuming that√

N<216. Function perm(i.pos) returns the permu-
tation value of the original index of item i. The
reason for storing the original index of block i is
its necessity in the re-initialization process. When
data are brought back to the enclave during the re-
initialization, the original indices are lost unless we
can inverse the permuted value. Line 5 is required
since the Melbourne shuffle is handling N +

√
N

items. obv bk is an array of two items. One item is
used to process the “real” item and the other for
processing the dummies. To prevent an adversary
from knowing the number of items in each T block,
loops in lines (23-37) use obv bk[1] to include the real
item and obv bk[0] to include the dummy.

• Stage 2: Filling array O out of T . Since T is filled, we
can move to stage 2 which is to read each bucket of√
Np logN items from T and fill each corresponding

bucket of
√
N items of the final output array O. It

is mandatory to fill each bucket of
√
N items in O

in one step to achieve obliviousness, otherwise, an
adversary would be able to find out the number of
items in each block (of size pLogN ) in T . Accord-

Fig. 10: Illustration of the second step in Melbourne shuf-
fle in SGX SQRT ORAM. Blocks of size p logN are read
sequentially into the enclave and dummies are removed.
When a bucket of

√
N items is filled inside the enclave, it is

encrypted and copied to O.

ingly, an array of size
√
N should be kept inside the

enclave to be sent after processing to O. However, a
bucket of size

√
Np logN from T may be too big to fit

in our enclave, so we modify the original algorithm
to read it in blocks of size p logN . Fig. 10 explains
stage 2. For each block, dummy items are removed
and the ”real” items are copied to their locations in
O. Since stage 2 is straightforward, no pseudo code
is provided.


	Introduction
	Background
	SGX
	Oblivious RAM Overview
	Linear ORAM
	Square Root ORAM
	PATH ORAM


	Related Work
	Preliminaries
	Execution Model
	Threat Model, Assumptions, and Constraints
	Terminology
	Challenges Due to Limitations of SGX
	Limited Memory Space
	Lack of Memory Access Obliviousness


	Building Linear ORAM using SGX
	Initialization
	Item Access
	Complexity Analysis
	SGX Influenced Design Choices
	Limited Enclave Memory Space
	Lack of Enclave Memory Obliviousness


	SGX Square Root ORAM
	Initialization
	Item Access
	Re-Initialization
	Complexity Analysis
	SGX Influenced Design Choices
	Limited Enclave Memory Space
	Lack of Enclave Obliviousness

	Security Analysis

	SGX Path ORAM
	Initialization
	Item Access
	Complexity Analysis
	SGX Influenced Design Choices
	Limited Enclave Memory Space
	Lack of Enclave Memory Obliviousness
	Security Analysis


	Experimental Evaluation
	Experimental Setup
	Overall Performance
	SGX Path vs SGX SQRT ORAM
	Effects of Page-Size Assumption
	Additional Path ORAM Tests
	Comparison to ZeroTrace

	Future Work
	Conclusion
	References
	Appendix A: SGX Melbourne Shuffle

