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Abstract

Android has provided dynamic code loading (DCL) since

API level one. DCL allows an app developer to load additional

code at runtime. DCL raises numerous challenges with regards

to security and accountability analysis of apps. While previous

studies have investigated DCL on Android, in this paper we

formulate and answer three critical questions that are missing

from previous studies: (1) Where does the loaded code come

from (remotely fetched or locally packaged), and who is the

responsible entity to invoke its functionality? (2) In what ways

is DCL utilized to harden mobile apps, specifically, application

obfuscation? (3) What are the security risks and implications

that can be found from DCL in off-the-shelf apps?

We design and implement DYDROID, a system which

uses both dynamic and static analysis to analyze dynamically

loaded code. Dynamic analysis is used to automatically ex-

ercise apps, capture DCL behavior, and intercept the loaded

code. Static analysis is used to investigate malicious behavior

and privacy leakage in that dynamically loaded code. We have

used DYDROID to analyze over 46K apps with little manual

intervention, allowing us to conduct a large-scale measurement

to investigate five aspects of DCL, such as source identifi-

cation, malware detection, vulnerability analysis, obfuscation

analysis, and privacy tracking analysis.

We have several interesting findings. (1) 27 apps are found

to violate the content policy of Google Play by executing

code downloaded from remote servers. (2) We determine the

distribution, pros/cons, and implications of several common

obfuscation methods, including DEX encryption/loading. (3)

DCL’s stealthiness enables it to be a channel to deploy

malware, and we find 87 apps loading malicious binaries

which are not detected by existing antivirus tools. (4) We

found 14 apps that are vulnerable to code injection attacks due

to dynamically loading code which is writable by other apps.

(5) DCL is mainly used by third-party SDKs, meaning that app

developers may not know what sort of sensitive functionality

is injected into their apps.

I. INTRODUCTION

Android is the dominant smartphone OS. In Q2 2015,

IDC placed the worldwide market share of Android at 82.48

percent of all active smartphones [27]. However, its open

nature and the wide variety of app markets also make it

easier to disseminate malware or otherwise untrustworthy

apps. In 2016, Mirror reported that up to 10 million Android

smartphones had been infected by malicious software [21].

After realizing the severity of the malware threat, Google

developed and deployed Google Bouncer [48], a tool that

analyzes apps submitted to Google Play [15] and checks them

for malicious behavior before publishing them. Other security

vendors, such as Bitdefender [11], have released products that

are deployed on the client side with static malware analysis.

While most apps are distributed as standalone Android

application package (APK) files, the Android platform also

supports apps dynamically loading additional binaries at run-

time by making use of dynamic code loading (DCL). The

usage of DCL is not regulated by the OS, and as such it opens

up several possible threats. For example, it can be leveraged to

evade malware detection. Our research indicates that DCL is

widely used in mobile marketplaces. A thorough investigation

of various security-relevant aspects of DCL is thus needed.

By using DCL, a developer can change the behavior of

an app at runtime in unpredictable ways. This feature can

significantly ease the deployment of malicious code. Malware

authors are able to evade the security check of offline analysis

systems, such as Google Bouncer, by only executing the mali-

cious code when logical conditions are met [38]. For example,

we developed an app which downloads and dynamically loads

known malware over the network. This app passed the security

check of Google Bouncer, thus demonstrating the practicality

of such threats. Although the similar experiment has been

conducted by Poeplau et al. [52], our penetration proves that

this issue has not been addressed within the recent two years.

Moreover, our study of malware samples deployed by DCL

in the wild shows instances where the malicious behavior is

triggered by the status of the runtime environment, such as

availability of a network connection or the system time.

Google’s content policy [16] for apps on Google Play spec-

ifies that all application updates must go through their market.

This policy is not effectively enforced, however, because apps

can download and dynamically load new code at runtime

without using the market. In fact, our experimental and the

measurement results in Section V find numerous apps in the

wild that are loading remotely fetched code and violating this

policy. Android lacks the ability to track the provenance of

code loaded dynamically. Thus, the malicious behaviors and

privacy usage in the stealthy channel of DCL are not regulated.

Moreover, benign apps that improperly implement DCL can

be vulnerable to code injection attacks by other apps on the

device; the OS does not enforce any sort of integrity check

on dynamically loaded code, and in certain circumstances it is

possible for the attacker to tamper with the code to be loaded.
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While DCL can be the cause of some security problems,

it can also be used to protect the intellectual property of

Android developers. Some recent studies [64], [67] show that

DCL and bytecode encryption can be leveraged to obfuscate

an app, which makes it difficult to reverse-engineer with

static/dynamic analysis tools. Some security providers, such as

Bangcle [10] and Ijiami [17] provide such services to protect

the intellectual property of developers, where the whole app’s

bytecode is encrypted and stored as a private resource, and an

app container dynamically loads the bytecode after decryption.

In this work we perform a large-scale measurement of DCL

usage in over 46K apps, investigating the following issues:

• Provenance. The loaded bytecode can be either packed

as static files in the APK file or fetched stealthily from a

remote server at runtime. The latter is capable of evading

static/dynamic malware detection mechanisms. We are thus

interested in the popularity of its usage, despite the fact that

it is prohibited by Google Play.

• Security risks/implications. Are there any malicious be-

haviors hidden in dynamically loaded code? Does the usage

of DCL in existing mobile apps have vulnerabilities? How

is user privacy tracked in dynamically loaded code?

• Application hardening. DCL can be used by apps for the

purpose of anti-reverse engineering. In the obfuscated app,

the bytecode of the original app is encrypted and repacked.

The modules of bytecode decryption, code loading, and app

lifecycle construction are interposed in the original app’s

launching procedure. We investigate an app’s pattern after

obfuscation, popularity, and comparison with other common

obfuscation techniques, including native code, lexical obfus-

cation, Java reflection, and anti-decompilation.

• Usage in the wild. How widely is DCL adopted in apps

in marketplaces? Does the DCL usage correlate with other

application attributes, e.g. number of downloads, average

rating, and number of ratings? We also study the source of

dynamic code loading within the app itself, whether it is

the main application or a third party library. For example, a

developer may integrate a software development kit (SDK)

related to advertising in order to generate revenue. This SDK

may use DCL to load portions of its functionality at runtime.

We are interested in the entity responsible for using DCL.

We summarize the following challenges. (1) Code intercep-
tion. We need to log the DCL event and intercept the code

loaded. The files containing the binaries may be temporary,

which are compiled as intermediate results and will be deleted

after being merged with the app triggering the DCL behavior.

The app’s runtime and our code interception are concurrent in

the OS. We thus need to instrument the low-level IO-related

APIs to enforce mutual exclusion and intercept those loaded

binaries. (2) Provenance/entity identification. The Android OS

itself does not distinguish whether or not a file in storage is

downloaded from the network, meaning that it is non-trivial to

determine if a file loaded using DCL was originally sourced

from the network. Detecting this case will require making

use of flow analysis. In addition, the code loading may be

triggered by a third-party SDK or library. Our mechanism

must also be able to find out whether it was the developer

or the third-party library provider who performed DCL. (3)
Obfuscation identification. DCL is being actively used for

anti-reverse engineering purposes. A proper methodology to

accurately detect when an app is obfuscated in this way needs

to be developed.

In this work we make the following contributions:

• We develop a framework, DYDROID, which combines both

dynamic and static analysis in order to detect DCL and

intercept the bytecode and/or native code loaded. The paths

to the binaries to be loaded are pushed to a queue, and

we instrument the IO-related calls to block file delete and

rename operations during the phase of code interception.

A flow analysis is implemented in the dynamic analysis,

which captures the flow from a URL to a file. DYDROID

tracks the call site of DCL behavior by retrieving the

element of the Java stack trace. Using this stack trace we are

able to differentiate the responsible entity launching DCL.

After capturing the dynamically loaded code, DYDROID

performs static analysis on the intercepted binaries in order

to determine malicious behavior and privacy leakage. In ad-

dition, we summarize the general pattern of apps obfuscated

with bytecode encryption/loading based on the samples

from four mobile app security vendors. The obfuscation

pattern involves how the three core components, the app

bytecode decryption, DCL, and app lifecycle construction,

are organized in an application subclass [4] as the container.

• DYDROID is capable of stable operation with little manual

intervention. Various types of exceptions are automatically

handled, such as device storage running out. It allows us

to be the first to conduct a large-scale measurement of

DCL over 46K Android apps. Our measurement tracks the

provenance of DCL, including local/remote availability, and

the entity. We find the 27 apps that violate the content

policy of Google Play by executing the binaries downloaded

from the remote server of Baidu [9]. Generally, over

85% of DCL is initiated by third-party SDKs or libraries.

And the app popularity has the positive correlation with

DCL adoption. Moreover, we conduct the first large-scale

measurement of various obfuscation methods to understand

their distribution, pros/cons, and implications.

• Our analysis demonstrates a number of apps in the wild

that use DCL to load malware. We find 87 apps which

load malicious bytecode or native code at runtime, making

them undetectable to existing antivirus tools such as Google

Bouncer or VirusTotal [29]. We have conducted further

analysis which reveals that the execution of the malicious

code in these apps is triggered by properties of the runtime

environment, such as the system time, GPS service avail-

ability, and network connectivity.

• We have identified a vulnerability in a number of DCL

apps that leaves them open to code injection attacks [52]

by other apps on the system. We explore a variant of the

code injection vulnerability, where code is loaded from the
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Fig. 1. System Architecture

internal storage of other apps, and we find 7 apps vulnerable

to this attack.

The remainder of this paper is organized as follows: Sec-

tion II presents a brief background. We cover the design

of DYDROID and its implementation in Sections III and

IV. Section V presents our measurement results over large

numbers of real-world apps with DCL, which is followed by

the relevant discussion. We have related work in Section VI.

Finally, we conclude our work in Section VII.

II. BACKGROUND

Android apps are written in Java. The classes are compiled

to Dalvik bytecode with the tool dx and further stored as

one file classes.dex in the installation package. Each

class is loaded and executed in the DVM1. Other than the

internal static executable bytecode, Android also supports

fetching external binaries dynamically. Developers use the

class loader provided by Android to load arbitrary executable

bytecode, which is stored in files with various formats, such

as APK, JAR, ZIP, DEX, and ODEX (optimized DEX). The

DEX code is then translated into a performance-optimized

version, ODEX. There are two types of basic class loaders

DexClassLoader [5], and PathClassLoader [6]. Apps

can also load native code. The APIs in the Java Native

Interface (JNI) [18] can be invoked to dynamically load native

libraries in .so format. Android does not verify the loaded

code integrity or have the ability to differentiate whether the

file containing loaded binaries is originally packed in the

application or downloaded from a remote server at runtime.

The binaries can be accessed with diverse methods. For

example, an application can even use package contexts to

retrieve the classes contained in another application. However,

the loading behavior will always be achieved by either using

DexClassLoader, PathClassLoader for DEX code or

invoking the APIs load(), loadLibrary() in the JNI for

native code. All DCL goes through one of these points, which

provides us with a reliable way to enforce complete mediation

in intercepting the loaded code.

1Starting with Android 5.0 the Dalvik virtual machine was replaced by
ART, an ahead of time compiler. In this work we make use of Android 4.3.1,
and thus we discuss Dalvik.

Fig. 2. Java Stack Trace Element

III. SYSTEM DESIGN

A. System Overview

The architecture of DYDROID is illustrated in Figure 1.

An APK file will first be decompiled into an intermediate

representation (IR). Then we check if the app creates the

class loader to dynamically load DEX code or invokes the

APIs related to native code loading. We do not verify the

reachability of DCL-related code, only its existence within

the app. This step simply serves as a filter to determine which

apps to investigate further using our dynamic analysis. Apps

containing DCL-related code are then executed and our App

Execution Engine is used to log DCL events and track files

downloaded remotely during execution. Using this information

we are able to determine the provenance of the loaded code

(local or remote) and whether the DCL is vulnerable to

code injection attacks. The intercepted code will be passed

to our static analysis to investigate the existence of malicious

behavior and privacy leakage.

We also perform obfuscation analysis by checking the

Android manifest file and the availability of basic components

against a series of rules to identify whether bytecode loading

and encryption are applied to obfuscate the app. The method is

also designed to recognize the usage of other anti-reverse en-

gineering techniques, including lexical obfuscation, reflection,

native code, and anti-decompilation.

B. Dynamic Analysis

To completely capture loading events, we modify the An-

droid framework. All DCL events an app can use go through

DexClassLoader or PathClassLoader in the DVM,
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TABLE I
RULES OF DOWNLOAD TRACKER

source: URL, sink: File
URL:

URL → InputStream
InputStream:

InputStream → InputStream
InputStream → Buffer

Buffer:
Buffer → InputStream
Buffer → OutputStream

OutputStream:
OutputStream → Buffer
OutputStream → OutputStream
OutputStream → File

File:
File → File
File → InputStream

or load() or loadLibrary() in the JNI. As such, we

instrument these methods to record the following information:

(1) path to the loaded file with various formats, e.g., so, APK,

ZIP, JAR, DEX; (2) path to the directory storing the optimized

version of the DEX code; (3) the call site class of the DCL

(the class where the class loader is created). We determine the

call site by analyzing the stack trace [20]. An example of this

analysis can be found in Figure 2. We record the classes of the

sequence of objects whose methods are called when the class

loader is initialized, and the top element of the stack trace

is the call site class, which is used to figure out whether the

developer or a third party library provider launched the DCL.

Our DCL logger skips the system binaries, such as native

libraries in /system/lib, which are provided by security-

trusted OS vendors and are thus not in our scope.

When a DCL event is captured, the path to the file being

loaded is stored in a queue and logged. In some third-party

libraries, such as the Google Ads library, we observed that the

files loaded are temporary, meaning they are deleted after the

load. As such, fully intercepting the loaded binaries requires

enforcing mutual exclusion. We modify the methods related

to file deleting and renaming in java.io.File to ensure

that the delete and rename operations silently fail for files in

our queue of dynamically loaded binaries. This ensures the

dynamically loaded code remains available for later analysis.

To investigate if a loaded file is packed locally or fetched

remotely at runtime, our dynamic analysis includes taint

tracking regarding file downloads. As shown in Table I,

URL and File are modeled as source and sink. We first

instrument the class URL to record all the URLs initialized,

and the class URLConnection with its subclasses, such

as HttpURLConnection, HttpsURLConnection, and

FtpURLConnection, to track the flow from URL to Input-

Stream. Next, we instrument the constructors, and the meth-

ods read() and write() of the classes InputStream,

Reader, OutputStream, Writer, including their sub-

classes in the package java.io.*, to track the flows among

InputStream, Buffer, OutputStream, and File. The copy and

renaming operations are considered as the flows among Files.

Each object is represented by type and hash code [19]. In the

data flow graph, we search the paths from a URL to a File.

In order to increase the chance that our dynamic analysis

engine triggers the DCL event, we employ Fuzz testing [56],

[49], [45], [28]. Specifically, a sequence of events is generated

and triggered automatically as inputs to UI elements, which

invoke the callback functions and Android framework. We

utilize the fuzzing tool Monkey [28], which runs on top of

a device running the instrumented version of Android 4.3.1.

We verify that the DCL-related APIs in Android 7.1 do not

change significantly from Android 4.3.1. DexClassLoader
and PathClassLoader remain the same and ART uses

DEX to load. The class Runtime only adds an API (load0) to

load native code. We only need to add hooking to one API to

adapt to the latest version of Android. Our system modification

thus works well on newer versions of Android.

a) Provenance/entity Information: Poeplau et al. had

shown that it was feasible to evade Google Bouncer with DCL

[52]. Our experiment indicates that the issue has not been fixed

in the recent two years. We prepared a malicious app AppM ,

that is derived from known malware [22]. We submitted this

app to Google Play and it was rejected by Google Bouncer. We

then implemented a new app AppL, which can dynamically

load AppM from a server at runtime. The server decides

whether or not to send AppL the link to the copy of AppM .

The app AppL was approved and released on Google Play. We

should note that we disabled the malware delivery at the server

side during application review and after release. We thus make

sure no end user is affected by the malware.

Google has a content policy [16] that apps should not using

side channels other than the standard updates to modify the

APK binary code. In other words, when using DCL it is only

legitimate to load code already packaged into the installation

package. Remote fetching new code is not allowed. However,

we still found some apps fetching binaries from a remote

server at runtime. This technique can ease the application up-

dates for developers. For example, a normal application update

can be packed as a DEX file and be pushed to devices instantly

when it is ready, bypassing lengthy application review on

the store. However, loading the code fetched remotely brings

malware authors a stealthy channel to deploy malicious code

after app approval by the store. Given the limitation of offline

analysis systems [51], [62], the malware detection deployed on

mobile marketplaces can be evaded easily, where the malicious

code is actually fetched and executed after the application’s

public release. Moreover, the Android OS currently cannot

tell whether the file to be loaded is fetched remotely. Thus,

the existing Android ecosystem lacks a mechanism to enforce

Google’s policy. The DCL logger and download tracker of

DYDROID records the provenance information for remotely

downloaded files, meaning we can identify which DCL apps

are loading code remotely and thus violating the policy.

In addition to tracking local/remote provenance, we can also

determine if the DCL event was triggered by the app itself

or a third party library included with it. In Java, packages

organize classes into namespaces. Classes in the same package
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can access the package-private and protected members of each

other. Android apps inherit this organizational pattern. Each

app has a unique application package name that includes the

classes from developers, while the third-party libraries are

organized with different package names. As shown in Figure 2,

the package name can be used to determine if the DCL event

was triggered by the main app or a third party library.

b) Vulnerability Analysis: When studying DCL we no-

ticed a potential vulnerability depending on where apps

load their dynamic code from. If bytecode is being

loaded, then the parameter dexPath in the constructors

of DexClassLoader and PathClassLoader specifies

the list of files containing bytecode to be loaded. If na-

tive code is being loaded, the parameter libName of

API loadLibrary() represents the name of the library

containing the loaded code. It will be passed to function

mapLibraryName() to get the path to the library file given

the runtime environment, and the API load() does the real

job of loading code from the library file.

Under Android, the responsibility for verifying the integrity

of the file being loaded is on the developer, who is generally

more concerned with functionality than security. Thus, if the

loaded code is located on a space writable by other parties,

then other apps can replace the file with another, and cause

the code to be loaded in the context of the vulnerable app.

Poeplau et al. [52] have previously discussed the problem of

dynamic code loading from external storage. As such, part of

our analysis checks for this vulnerability in our application set.

In addition, we identify another variant of this vulnerability.

During vulnerability analysis, we check if the path of the file

loaded falls into either of the following categories:

• External storage. Prior to Android 4.4, any app is able to

modify the contents of external storage without declaring

special permissions. This means that if an app performs

DCL from a file on external storage (for example, in

/mnt/sdcard/2), any other app can replace that file. After

Android 4.4, apps must declare a special permission in order

to write to external storage. This is a common permission,

however, and it would not be unusual for an app to have it.

• Internal storage of other apps. Android provides each

app private internal storage where only that app can create

files. However, we have observed that other apps can dy-

namically load binaries from the private internal storage of

other apps. While it unclear why an app developer would

want to do this, we noticed that some do. As such, we flag

this situation as a potential vulnerability in the apps that

load files from the internal storage of other apps, e.g. from

/data/data/otherAppPackageName/.

C. Static Analysis

a) Malware Detection: The dynamic code intercepted by

our system can be bytecode or native code. Most malware

detection systems for Android, however, only operate on

2The example paths to external storage and internal storage are based on
the observation in the Android device, where we conduct our measurement.

bytecode. As such, in order to perform malware detection of

our captured samples we make use of the publicly available

malware analysis system DroidNative [32], [14], which is able

to analyze both bytecode and native code binaries. DroidNative

translates the binaries compiled for various platforms, such as

ARM and x86, to the platform independent Malware Anal-

ysis Intermediate Language (MAIL) [31]. MAIL provides a

high-level representation of the disassembled binary program,

which includes the specific information such as control flow

information, function/API calls and patterns. Given the issue of

zero-day malware and malware variants, DroidNative utilizes

a learning-based method, and trains a classifier based on

the annotated control flow graphs (ACFG) of malware. In

the evaluation with traditional malware variants, DroidNative

achieves the detection rate of 99.48%. In DYDROID, we train

DroidNative with 1,240 apps from 19 malware families which

are collected from two sources [69], [22]. We then use the sys-

tem to detect malware samples from among the dynamically

loaded code we intercept. Specifically, DroidNative conducts

a subgraph matching on the ACFG and flags a malware when

the degree of match is over 90%. When a sample is flagged

as malware, we manually verify it in order to reduce the

possibility of false positives.

We then go further, and for each intercepted file contain-

ing malicious code, we validate whether the loading event

can be reproduced under a variety of runtime environment

configurations. First, we set the system time to be before

the app’s release date. Second, we enable airplane mode but

intentionally re-enable the WiFi connection. Third, we enable

airplane mode to disable all Internet connectivity. Finally, the

location service is disabled.

b) Privacy Tracking Analysis: Previous related studies

[69], [61] found that Android apps frequently transmit sen-

sitive data to unknown destinations without user consent.

However, the severity of this problem remains unclear within

DCL. As such, we conduct a static data-flow analysis on

intercepted DEX code.

Our data-flow analysis leverages the public system Flow-

Droid [33], which achieves the high precision 86% and recall

93% in data leak detection. FlowDroid requires the application

installation package as input. The manifest file and layout

resource are used to locate the app entry points. While we only

have the DEX binaries intercepted. Unlike a whole app that

has the well-defined components interacting with the system,

the loaded code interacts with the app, and an arbitrary class

can be the entry point to the loaded libraries. We thus modify

FlowDroid regarding the definition of program entry point

and remove its dependency on the manifest file and layout

resources.

Felt et al. [41] surveyed 3,115 smartphone users about 99

risks and asked the participants to rate how upset they would

be if a given risk occurred. Specifically, their survey covered

11 data types regarding user privacy. Additionally, we combine

the data types reported in other mobile privacy tracking studies

[39], [65], [70], as listed in Table X. The 18 types of privacy

are classified into 5 categories:
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• Location. Android provides the APIs that can be invoked

to fetch user’s real-time location.

• Phone identity. The smartphone identifiers (IMEI, IMSI,

ICCID) can be used to recognize the device’s identity.

• User identity. The user identifiers (phone number, device

accounts) can be used to track user’s identity.

• Usage pattern. The system’s PackageManager APIs

support fetching the apps and packages installed on device.

Third parties are strongly motivated to track this type

of data. For example, advertisement providers can infer

user’s interests from the installed apps and selectively push

customized ad content.

• Content provider. Content providers control the access to

a structured set of data. Android has a series of default

content providers to manage the private user data, e.g.

bookmark in browser, address book, and call history.

For the categories location, phone identity, user identity, and

usage pattern, our data-flow analysis checks the invocation

of related system APIs and callback functions as the source

of privacy tracking. Content provider is identified by URI

[7] and organized as an SQLite database with schema and

table definitions. We thus look up the URI mapped with each

privacy-sensitive content provider as the source of data flow.

We use the comprehensive list of sinks in the SuSi project

[55], which was discovered by a learning approach.

D. Obfuscation Analysis

In addition to the dynamic and static analysis components of

DYDROID, we also analyze obfuscation techniques applied to

the apps. Based on our observation of obfuscated app samples

served by various providers, e.g., Bangcle, Ijiami, 360 [1],

and Alibaba [2], we found that these services share a common

design based on application rewriting, where code loading and

encryption are actively used with the purpose of anti-reverse

engineering. An application subclass is implemented as a con-

tainer. When the application process is started, this container is

instantiated before any of the application’s components. The

class loader created in the container loads the bytecode of

other components from an encrypted file packed as a local

resource, and the customized code decryption runs before the

actual code load. Thus, it is impossible to reverse-engineer the

bytecode through static analysis. In addition, some tricks are

applied to make dynamic analysis more difficult, e.g., for one

app, three distinct processes are started and attach the ptrace
system call [24] in a loop to prevent the execution from being

tracked and controlled externally.

When all the following rules are fulfilled, we identify the

obfuscated app with DCL applied based on the decompiled IR

as illustrated in Figure 1.

• The attribute android:name is defined in the

application tag in the application’s manifest file

and a class loader is instantiated in this class. This is

the name of the class that executes before any other

components of the app. This class (container) injected via

application rewriting performs as the new entry point of

the whole app. It invokes the added native code to decrypt

the original bytecode of the app. Moreover, the bytecode

is loaded at runtime and the app lifecycle is constructed

within this class.

• Not all the application components declared in the manifest

file are found in the decompiled code, and a file in the

format that supports bytecode storage is found locally. The

decompilation tool used by us is designed for the app

organized in the general pattern, where the bytecode is

stored in the file classes.dex. Thus, the obfuscated

DEX code stored as a resource (normally in the assets
folder) cannot be found and decompiled by the reverse

engineering tool. However, all the components to be invoked

at runtime need to be declared in the manifest file. We thus

treat this mismatch as an identification rule.

• The job of decryption is normally implemented in native

code for the sake of security. The application container class

that is discussed above uses the JNI to load the local .so
file to decrypt the bytecode. Although the code decryption

may be implemented in Java within the application container

class, the decryption process will be exposed to attackers,

who can reverse engineer the application container class. In

our dataset we did not find any examples of using Java to

do the code decryption.

Our mechanism to detect obfuscation techniques includes

several methods in parallel with DCL, such as lexical obfus-

cation, and anti-decompilation. We intend to deliver the com-

pressive measurement results regarding the app obfuscation

usage in the current mobile marketplace.
Lexical obfuscation is the process where the identifiers of

classes, fields, and methods in the bytecode are replaced with

meaningless ones, and thus we need to judge whether each

identifier makes sense regarding semantics. We implement a

parser to extract the identifiers. We compare the identifiers

against a language database constructed from DBpedia [12],

which dumps Wikipedia for the purpose of Natural Language

Processing (NLP). If the identifiers in an application do not

correspond to actual words, then we assume the app has been

lexically obfuscated. ProGuard [23] has been integrated into

Android IDE to provide the lexical obfuscation functional-

ity. One may argue that the ProGuard identifier assignment

scheme is rather repetitive and simple to identify, which is

straightforward to be used to identify the usage of lexical

obfuscation. However, there are several other mobile security

vendors having such a functionality, such as Allatori [3],

where the app is obfuscated by methods other than the simple

identifier renaming. Our method is thus able to recognize the

obfuscation usage comprehensively.
Reflection allows a running program to retrieve information

about itself and the runtime environment, which can be used

to instantiate arbitrary classes, invoke methods, and alter data

fields. As with native code, although developers may have

various purposes of using these techniques, such as perfor-

mance improvement, accessing private fields and methods,

they do increase the bar of reverse engineering, because

they make analyzing the program statically very difficult. But

dynamic analysis is still able to recover the execution of the

420



TABLE II
DYNAMIC ANALYSIS SUMMARY OUT OF 40,849 APPS FOR BYTECODE AND

25,287 APPS FOR NATIVE CODE

DEX Native
Failure 495 (1.21%) 330 (1.31%)

Rewriting failure 454 (1.11%) 133 (0.53%)
No activity 8 (0.02%) 13 (0.05%)

Crash 33 (0.08%) 184 (0.73%)

Exercised 40,354 (98.79%) 24,957 (98.69%)
Intercepted 16,768 (41.05%) 13,748 (54.37%)

apps obfuscated by this method. We determine if reflection

is applied by checking the existence of the related APIs of

the package java.lang.reflect. Moreover, the usage of

native code can be identified by confirming with the output of

our dynamic analysis.

Anti-decompilation techniques hinder the reverse engineer-

ing tools by making the code appear invalid to them. For

example, the programming language pattern lacking the one-

to-one mapping from DEX bytecode to the target language.

When we decompile the Android apps to IR, we record the

apps obfuscated with anti-decompilation techniques.

IV. IMPLEMENTATION

We leverage the open source tool baksmali [26] to

unpack and decompile the installation package into the

IR smali. The log of our dynamic analysis and the

dumped loaded code are stored in the external storage of

the device. If the application does not declare the An-

droid permission WRITE EXTERNAL STORAGE, we will

rewrite and repack the decompiled version with the per-

mission added to the manifest file. Our DCL logger and

code interception rely on instrumenting the constructors

of DexClassLoader and PathClassLoader, the APIs

load() and loadLibrary() in the JNI, and the APIs

related to file deleting and renaming in java.io.File. The

download tracker involves instrumenting the constructor of

the class URL and the method getInputStream() of the

class URLConnection, including its subclasses. Moreover,

the flow among InputStream, Buffer, OutputStream, and File

are tracked through the constructors and the methods read()
and write() of the classes InputStream, Reader,

OutputStream, Writer. We write a script in Python to

parse the output of download tracker and construct the flow

graph of file download.

V. MEASUREMENT

In this section, we will introduce our measurement data

set. We then present our measurements results, which mainly

answer the following questions. (1) What are the apps loading

code in the remote fetch manner that is prohibited by Google

Play, and who is the responsible entity? (2) How is the DCL

used for app hardening, specifically, obfuscation? (3) What are

the security risks/implications of DCL in the marketplaces?

The dynamic analysis runs on the Samsung Galaxy Nexus

device with the fuzzing tool Monkey running on top of it.

TABLE III
DCL V.S. APPLICATION POPULARITY BASED ON 58,739 APPLICATIONS;

NUMBER OF DOWNLOADS; NUMBER OF RATINGS, AVERAGE RATINGS

#Downloads #Ratings Rating
DEX 60,010 2,448 3.91

Without DEX 52,848 2,318 3.77

Native 288,995 8,668 3.82
Without Native 75,127 1,119 3.79

TABLE IV
RESPONSIBLE ENTITY OF DCL OUT OF 16,768 APPS FOR BYTECODE AND

13,748 APPS FOR NATIVE CODE

3rd-party (#Apps) Own (#Apps) 3rd-party &
Own (#Apps)

DEX 16,755 (99.92%) 50 (0.30%) 37 (0.22%)

Native 11,834 (86.08%) 2,280 (16.58%) 366 (2.66%)

A. Data Set

We randomly collected 58,739 apps and the metadata,

such as description, rating, the number of downloads, from

Google Play in November 2016. The data set includes 42

application categories. 58,685 apps are successfully unpacked

and decompiled into the IR. Those apps which fail in the

reverse-engineering procedure are obfuscated. The decompiler

crashes and does not generate the smali code. We find out

that 46K apps have DCL operations in the decompiled IR,

where 40,849 apps initialize class loaders for loading DEX

code, and 25,287 apps invoke related APIs in JNI for loading

native code. We note that the DCL may not be actually

executed at runtime. We try to avoid blindly exercising app,

given the heavy cost of dynamic analysis.

B. Results

The results of our dynamic analysis are summarized in

Table II. The app will be rewritten and repacked with the

permission of writing to external storage added, if it is not de-

clared, so as to log the DCL. The anti-repackaging technique is

applied to some apps, which crashes apktool. Moreover, the

fuzzing tool cannot exercise those apps without any Activity
component. Finally, apps may also crash at runtime due to the

implementation fault by developers. We overall successfully

exercise 40,354 apps for bytecode and 24,957 apps for native

code, among which the DCL of 16,768 apps and 13,748 apps

are actually executed and the loaded code are successfully

intercepted, separately. We note that the loading of system

library is not included in our scope, which is provided by

security-trusted OS vendors.

By mining the log of DCL from mobile advertisement

vendors, such as AdMob, we find the general pattern of the

file path to the bytecode loaded by the advertisement libraries

“/data/data/AppPackageName/cache/ad*”. Within

the 16,768 apps whose DCL events are captured and loaded

bytecode are intercepted, we find out 15,012 apps execute the

binaries related to mobile advertisement. Those files are gen-

erated intermediately and will be deleted after being merged

with the apps which start the DCL behaviors.
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TABLE V
APPS FETCHING BINARIES FROM REMOTE SERVERS

Package name
com.ipeaksoft.pitDadGame, com.xy.mobile.shaketoflashlight

org.madgame.Idom, com.yb.sex.cartoon5
com.jianhui.FJDazhan, com.quwenba.i9300manual

com.rhino.itruthdare, com.xiangqi.fanapp.a1521
com.huijia.moyan, org.mfactory.three.bubble
com.huijia.zuoqingwen, apps.simple.recipe

com.xiangqi.fanapp.a1284, com.ioteam.numbertest
com.avpig.acc, air.com.qqqf.xxywszzy2a

com.seven.chuanyueqinggong, com.game.knyds
air.com.qqqf.xxnjyybdc123456, com.seven.tiancantudou

com.conpany.smile.ui, com.classicalmuseumad.cnad
com.seven.chuanyuegongting, com.seven.mengrushenj

com.nexusgame.popbirds, com.XTWorks.lolsol
com.Long.ButtonsShowAndroid

a) Dynamic Code Loading in Mobile Marketplaces:
The number of downloads, the number of ratings, and the

average rating are used to quantify the application popularity

in marketplaces. From Table III, we can see that the apps with

DCL are more popular than the complementary set. There are

various factors, which affect the application popularity, and

we cannot assert there is any causal relation between usage

of DCL and application reputation. However, given the high

popularity, the security risks of DCL, such as evading malware

detection, code injection vulnerability, and privacy tracking,

can thus easily affect large numbers of end users.

b) Provenance/entity Identification: We identify if the

third-party or developer is the responsible entity who launches

DCL. The results are summarized in Table IV. For both DEX

and native code, the third-party SDKs and libraries of over

85% are the actual entities to load code at runtime. Given the

difficulty of reverse-engineering the code dynamically loaded,

protecting the intellectual property is the possible motivation

of deploying third-party libraries using DCL.

With the download tracker in our dynamic analysis, we

find out the 27 apps in Table V, which execute the bina-

ries downloaded from remote servers at runtime. For ex-

ample, the app com.classicalmuseumad.cnad3 down-

loads two files in the formats JAR and APK from the

domain http://mobads.baidu.com/ads/pa/. All the

DCL events of loading code in the remote fetch manner are

initialized by the advertisement related third-party libraries

from Baidu [9]. The update mechanism of mobile market-

place is a reasonable explanation of the measurement results.

Application developer fully controls the update release. SDK

vendors cannot predict whether the most up-to-date version of

library will be included. In other words, the mobile market

channel is not dependable. Fetching the DEX code from a

remote server allows the third-party SDK providers to modify

the libraries without any constraint, which is prohibited by the

content policy of Google Play because it eases the deployment

of malware. However, the existing Android OS lacks the

3https://play.google.com/store/apps/details?id=
com.classicalmuseumad.cnad

TABLE VI
#APPS USING OBFUSCATION TECHNIQUES OUT OF 58,739 APPLICATIONS

Technique #Apps (%)
Lexical 52,836 (89.95%)

Reflection 30,664 (52.20%)
Native 13,748 (23.40%)

DEX encryption 140 (0.24%)
Anti-decompilation 54 (0.09%)
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Fig. 3. #Apps with DEX Encryption v.s. Application Category

ability to track the source of loaded code and is not effective

to enforce the policy.

c) Obfuscation Analysis: The feature of DCL can be

used to harden mobile apps. Based on our observation of

application samples from mobile application security providers

and the general pattern after being obfuscated, we detect the

app shielded by DCL and bytecode encryption. Moreover, we

also design the method to identify the usage of common ob-

fuscation techniques. Table VI lists how widely each technique

is adopted in the apps within our data set.

89.95% apps use the lexical obfuscation. The high adoption

rate is expected, as this functionality is included in ProGuard
and served within Android IDE for free [23]. Even with the

high popularity, lexical obfuscation just makes the source code

not human readable. For reflection and native code, though

they may be used for other purposes, such as performance

improvement, accessing private fields, they do increase the

difficulty of reverse engineering. 52.20% apps adopt reflection

and 23.40% apps include native code.

The adoption rate of DEX encryption method is still low

0.24%. DEX encryption has the decryption functionalities

inside native layer, and developers may have the compatibility

concern, given the Android fragmentation issue [8]. It is also

possible that this technique is relatively new and does not

have enough market penetration. Given the 140 apps using

DEX encryption, we measure its distribution across application

categories, which is illustrated in Figure 3. The categories

Entertainment, Tools, and Shopping of apps play a

dominant role. We further investigate the functionalities of

apps in these categories. The apps in the category of entertain-

ment provide the functionalities of controlling smart TV, where

the TV vendors are motivated to protect the communication
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TABLE VII
MALWARES DETECTED IN DCL

Family #Apps Sample App (#Downloads)
DEX Swiss code monkeys 1 com.sktelecom.hoppin.mobile (10,000,000)

Adware airpush minimob 2 com.oshare.app (10,000)

Native Chathook ptrace 84
com.com2us.tinyfarm.normal.freefull.google.global.android.common

(10,000,000)

TABLE VIII

MALICIOUS CODE LOADED IN VARIOUS CONFIGURATIONS OVER 91 FILES

Configuration #Files intercepted (%)
System time 72 (79.12%)

Airplane mode/WiFi ON 56 (61.54%)
Airplane mode/WiFi OFF 53 (58.24%)

Location OFF 70 (76.92%)

between smartphone and TV from being reverse engineered.

The apps in the category of tools are antivirus apps and those

in the category of shopping include the sensitive functionalities

of payment, which are both obfuscated for security.

Anti-decompilation disables the reverse-engineering tool

apktool by using its implementation bug. As apktool
keeps evolving, the percentage of apps with anti-decompilation

capability remains low 0.09%. Next, we discuss the security

risks and implications of DCL.

d) Malware Detection: Our measurement investigates

the malware hidden in DCL. Overall, we find that 87 apps

dynamically load malicious binaries in three malware families

from 91 static files 4. All the detection results are verified

by one of the authors manually with the following method

so as to guarantee that there is no false positive. DroidNative

outputs the ACFG match of the testing binary with the training

malware sample. A testing sample will be flagged as malicious

if over 90% ACFG of a malware training sample has the

parallel match with its ACFG. In most cases, the identified

testing samples only differ from the matched malicious sam-

ples in the memory addresses, which depend on where the app

is loaded. We note that because these malware samples are

loaded dynamically, existing detection systems do not detect

them. All of these apps are publicly released on Google Play,

which means they pass the security verification of Google

Bouncer. Moreover, we submitted the malicious samples to

VirusTotal [29] (a service that integrates various antivirus

products) for scanning and it failed to detect them.

We find the apps loading malicious code in three malware

families, and the results are listed in Table VII. For each

family, one sample application package name is given for the

sake of brevity. We share the full results with all malicious

apps in our technical report 5. One app loads the malicious

DEX code in the Swiss code monkeys family. It adds

the malicious code as a service, and sends IMEI, phone

number, and IMSI to a remote site. A remote user is able

to send and execute a command, such as app installation,

website navigation, adding browser bookmark, sending text

message, and blocking test message response. Two apps are

4One app may have multiple malicious files to load.
5http://zyqu.info/DyDroid DSN.pdf

found to execute the malicious bytecode in the family Adware
airpush minimob, where mobile advertisement is pushed

to the device via notification. Moreover, shortcuts are placed

on users’ home screens and browser settings are changed to

redirect homepage. There are total 84 apps loads malicious

native code in the family Chathook ptrace, which mainly

targets the two popular chatting apps QQ [25] and WeChat
[30] with millions of downloads. The malicious app tries to

get the root privilege first. Then, it attaches the system call

ptrace to the two apps as the superuser, controls the two

apps, and hooks the Java methods related to the chatting

window. Finally, the malware leaks the chat history to a remote

server.

We further investigate the malicious loading event can be

reproduced with different configurations of runtime environ-

ment. The results are listed in Table VIII. 19 files of malicious

code are not loaded when the system time is set before the

app’s release date, which can be used to bypass the check

during the app review phase. Moreover, we also observe

the hide of malicious behaviors when connection or location

service is not available, where those logical conditions make

it more difficult to detect the malware loaded dynamically.

e) Vulnerability Analysis: The app that loads code from a

space writable by other parties is vulnerable to code injections.

We classify those apps with risky DCL into two categories: (1)

private storage of other apps, (2) public external storage. The

results are listed in Table IX. We note that all the vulnerable

apps are manually confirmed to make sure that even developer

fails to enforce integrity verification on the loaded code. We

also check the manifest files of those apps in the second

category and make sure they do support the OS version lower

than 4.4. 14 apps are found to have risky usage of DCL. Three

vulnerable apps have over the 1M number of downloads. Both

developers and OS vendors should pay attention to security

regulation of DCL.

7 of them load native code from the internal stor-

age of other apps. 6 apps load the native code from

the file libCore.so in the internal storage of the app

com.adobe.air. The developers of these apps are differ-

ent from that of the app com.adobe.air, and they blindly

trust the integrity of the library provided by the Adobe

developer, which introduces the extra attack surface for

code injection. Another app com.devicescape.usc.wifinow
loads the library libdevicescape-jni.so from the app

com.devicescape.offloader, which share the same developer.

7 of them use world read/writable external storage

to cache the bytecode loaded. For example the

app com.longtukorea.snmg stores its bytecode file
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TABLE IX
VULNERABLE APPLICATIONS DETECTED. APPS IN THE CATEGORY OF EXTERNAL STORAGE ARE VERIFIED AS SUPPORTING THE OS VERSIONS LOWER

THAN 4.4

Category #Apps Package name (#Downloads)
DEX Internal storage of other applications 0

External storage (< Android 4.4) 7 com.longtukorea.snmg (1,000,000)
com.felink.android.launcher91 (1,000,000)

com.ycgame.cf1en.gpiap (100,000)
com.fitfun.cubizone.love (100,000)

com.fkccy.view (100,000)
com.trustlook.fakeiddetector (10,000)

com.leduo.endcallsms (100)
Native Internal storage of other applications 7 com.devicescape.usc.wifinow (1,000,000)

com.renren.and02506 (100,000)
air.air.com.hi4o.game.Subway Rushers (10,000)

air.com.fire.ane.test.bubblecrazy (10,000)
com.renren.wan.war (10,000)

air.com.fire.ane.test.ANETest (1,000)
com.moeapps (100)

External storage (< Android 4.4) 0

TABLE X
PRIVACY TRACKING IN DYNAMICALLY LOADED CODE BASED ON 16,768
APPLICATIONS (L: LOCATION, PI: PHONE IDENTITY, UI: USER IDENTITY,

UP: USAGE PATTERN, CP: CONTENT PROVIDER), BROWSER: READ

HISTORY & BOOKMARK

Data type Categ #Apps Exclusively
3rd-party (%)

Location L 254 251 (98.82%)

IMEI PI 581 576 (99.14%)

IMSI PI 27 25 (92.59%)

ICCID PI 8 6 (75.00%)

Phone
number

UI 12 10 (83.33%)

Account UI 23 23 (100.00%)

Installed
applications

UP 32 28 (87.50%)

Installed
packages

UP 235 231 (98.30%)

Contact CP 1 1 (100.00%)

Calendar CP 76 73 (96.05%)

CallLog CP 32 32 (100%)

Browser CP 1 1 (100%)

Audio CP 5 5 (100%)

Image CP 74 72 (97.30%)

Video CP 31 31 (100%)

Settings CP 16,482 16,441 (99.75%)

MMS CP 1 1 (100%)

SMS CP 1 1 (100%)

yayavoice_for_assets_2015101201.jar in the

public directory /mnt/sdcard/im_sdk/jar/. Malicious

parties can exploit these vulnerabilities by replacing the

original file with arbitrary binaries. One app with only the

permission of writing to the SD card can misbehave with all

the permissions declared by the vulnerable app granted.

f) Privacy Tracking Analysis: We investigate 18 types

of privacy tracked in the loaded DEX code with our static

analysis. The results are listed in Table X. As we mentioned

above, there are 15,012 apps loading the Google Ads library,

which has strict control of user privacy and only reads the

device settings. However, the remaining 1,756 apps heavily

leak various types of user privacy. About 30% apps leak the

user’s IMEI through DCL. Some highly sensitive types of data,

such as location, and installed packages are retrieved in more

than 10% apps. As for the responsible entity, the majority of

those privacy leakages are exclusively invoked by third-party

libraries. The integrated SDK/library is a black-box for the

developer, who is not clear about the security risks introduced.

C. Discussion

Using a fuzzing tool in dynamic analysis may have a code

coverage problem. We observe that advertisement libraries

initialize most of the DCL events and the DCL events are

triggered when the app is launched. Our observation matches

the results in MAdScope [50]. Thus using monkey is enough

regarding the purpose of our measurement.

Regarding the privacy tracking in DCL, users may know

and accept it when installing the application. Without this

differentiation, it is not possible to know if it is a violation

of the promised privacy or not. Deciphering the purpose of

privacy tracking is still an open question.

VI. RELATED WORK

a) Dynamic Code Loading & Measurement: Gibler et

al. [42] design the system AndroidLeaks, which performs a

static analysis to check user privacy leakage among large-

scale Android applications. It does not support the analy-

sis of dynamically loaded code. Grace et al. [44] conduct

a measurement regarding the privacy and security risks in

the advertisement libraries of Android applications, where

DCL is defined as a risky flag. Other than simply focusing

on advertisement libraries, we include the DCL invoked by

developer her/him-self and the third-party libraries for various

purposes. Zhauniarovich et al. [68] investigate the usage of

DCL and reflection in application update, where the native

code is not considered in the security model. DEX encryption

together with dynamic loading has been recently found in

the application of anti-reverse engineering, and some studies

investigate recovering the obfuscated applications [64], [67].
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However, there is no study to uncover its usage cases within

the Android applications in current marketplaces, such as

popularity, general obfuscation pattern, and pros/cons. Rastogi

et al. [59] have the system design similar to us, which focuses

on the mobile advertisement measurement on the App-Web

interface, while we explore the DCL usage. Poeplau et al. [52]

find out the vulnerabilities in the usage of loading external

code with a static analysis approach, but they do not further

analyze the security implications of the loaded binaries. Our

code analysis is its superset, which includes five security-

related aspects and allows us answer the 3 critical questions

missing there. Our dynamic analysis framework allows us to

precisely investigate the provenance, entity, and content of

DCL. It additionally reveals that the loading of malicious code

is triggered by properties of the runtime environment, such

as system time and network connectivity. Falsina et al. [40]

propose a code verification protocol and a drop-in library to

reduce the vulnerabilities in DCL.

b) Program Analysis: RiskRanker [43] determines that

DCL is taking place by static analysis. Its Dalvik code

execution scheme is not able to analyze code loaded from

sources other than local package, e.g. remote fetch. Zhang

et al. [66] introduce a learning-based approach to analyzing

the dependency of dynamic network requests. Crowdroid [35]

is deployed in a crowdsourcing manner to detect Android

malware using dynamic analysis. Because it applies low-level

system call interposition, the analysis is not fine-grained due

to the loss of context in Android middleware. Specially, it

cannot differentiate the bytecode in the original application

with that additionally loaded. TaintDroid [39] tracks the taint

propagation at runtime, which aims at privacy leakage de-

tection. Its implementation is based on DVM modification,

which thus cannot handle native code. DroidBox [13], which

combines TaintDroid and modifications of Android’s code

libraries, is able to log sensitive events at runtime, such as

file read/write, loading class through DexClassLoader. It

shares the same limitation with TaintDroid on analyzing native

code. Some other dynamic analysis approaches can be adopted

in our measurement [34], [63], [60], [58], which reconstructs

both low-level OS-specific and high-level Android-specific

behaviors. Those methods introduce heavy latency in behav-

ior reconstruction. Our approach intercepts the dynamically

loaded code, and passes it to the cheap static analysis.

c) Other Android Security Problems.: There are also

some previous studies on other Android security problems,

which are complementary to this paper. Rastogi et al.[57]

demonstrate that obfuscation is widely used in Android mal-

ware for the purpose of bypassing detection. Cao et al. [36]

propose and implement a systematic solution to the static

analysis of Android framework and generating the Android

API summaries. APPSHIELD [53] enables the enforcement

of arbitrary access control policies without the dependencies

on OS, which resolves the data/privacy leakage issue in the

enterprise scenario. AUTOCOG [54] leverages a learning-based

approach to automatically verify whether the reason for in-app

privacy usage is fully stated in the application description.

SafePay [37], with backward compatibility, is proposed to

address the issue of credit card information leakages via

smartphone. Jin et al. [47], [46] design privacy-preserving

solutions in the data collection for mobile sensing networks.

VII. CONCLUSION

The unpredictability of DCL challenges the related security

and accountability analysis. In this paper, we build the system

DYDROID, which is capable of intercepting DCL events and

saving copies of the loaded bytecode and native code. We

conduct a large-scale measurement of the DCL component

of over 46K apps to investigate three critical questions miss-

ing in previous studies: (1) provenance, which includes the

code’s remote/local availability, and responsible entity; (2)

app hardening, where DCL is used for the purpose of app

obfuscation; (3) security risks/implications, which contains the

malware detection, vulnerability analysis, and privacy tracking

analysis. The apps that are found to use DCL in the remote

fetch manner show that there is no existing solution to the

enforcement of the related content policy. DCL is mainly used

by third-party SDKs, indicated that the developer may not

be aware that it is occurring. Given its stealthiness, DCL is

also a channel to deploy malware, and we observe the real

samples where the actual loading is controlled with logical

conditions, such as system time. The security verification of

DCL is needed from the app developer and OS vendors, given

the apps vulnerable to code injection, which load binaries

writable by other parties.
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